5. Relativistic Wave Equations
and their Derivation

5.1 Introduction

Quantum theory is based on the following axioms!:

1. The state of a system is described by a state vector [¢) in a linear space.
2. The observables are represented by hermitian operators A..., and func-
tions of observables by the corresponding functions of the operators.

3. The mean (expectation) value of an observable in the state |¢) is given

by (4) = (6] A1),
4. The time evolution is determined by the Schrodinger equation involving
the Hamiltonian H
0[y)
ih——-=H . 5.1.1
= H) (.1.1)
5. If, in a measurement of the observable A, the value a,, is found, then the
original state changes to the corresponding eigenstate |[n) of A.

We consider the Schrédinger equation for a free particle in the coordinate
representation

0 h?
8—;” = —%V%. (5.1.2)

ih
It is evident from the differing orders of the time and the space derivatives
that this equation is not Lorentz covariant, i.e., that it changes its structure
under a transition from one inertial system to another.

Efforts to formulate a relativistic quantum mechanics began with at-
tempts to use the correspondence principle in order to derive a relativis-
tic wave equation intended to replace the Schrodinger equation. The first
such equation was due to Schrodinger (1926)2, Gordon (1926)2, and Klein
(1927)%. This scalar wave equation of second order, which is now known as
the Klein—Gordon equation, was initially dismissed, since it led to negative

1 See QM I, Sect. 8.3.

2 E. Schrédinger, Ann. Physik 81, 109 (1926)
3 W. Gordon, Z. Physik 40, 117 (1926)

* 0. Klein, Z. Physik 41, 407 (1927)
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probability densities. The year 1928 saw the publication of the Dirac equa-
tion®. This equation pertains to particles with spin 1/2 and is able to de-
scribe many of the single-particle properties of fermions. The Dirac equation,
like the Klein—Gordon equation, possesses solutions with negative energy,
which, in the framework of wave mechanics, leads to difficulties (see below).
To prevent transitions of an electron into lower lying states of negative en-
ergy, in 1930° Dirac postulated that the states of negative energy should
all be occupied. Missing particles in these otherwise occupied states repre-
sent particles with opposite charge (antiparticles). This necessarily leads to
a many-particle theory, or to a quantum field theory. By reinterpreting the
Klein—Gordon equation as the basis of a field theory, Pauli and Weisskopf”
showed that this could describe mesons with spin zero, e.g., m mesons. The
field theories based upon the Dirac and Klein—Gordon equations correspond
to the Maxwell equations for the electromagnetic field, and the d’Alembert
equation for the four-potential.

The Schrodinger equation, as well as the other axioms of quantum theory,
remain unchanged. Only the Hamiltonian is changed and now represents a
quantized field. The elementary particles are excitations of the fields (mesons,
electrons, photons, etc.).

It will be instructive to now follow the historical development rather than
begin immediately with quantum field theory. For one thing, it is concep-
tually easier to investigate the properties of the Dirac equation in its inter-
pretation as a single-particle wave equation. Furthermore, it is exactly these
single-particle solutions that are needed as basis states for expanding the field
operators. At low energies one can neglect decay processes and thus, here, the
quantum field theory gives the same physical predictions as the elementary
single-particle theory.

5.2 The Klein—Gordon Equation

5.2.1 Derivation by Means of the Correspondence Principle

In order to derive relativistic wave equations, we first recall the correspon-
dence principle®. When classical quantities were replaced by the operators

0
energy EF— iha

and

® P.A.M. Dirac, Proc. Roy. Soc. (London) A117, 610 (1928); ibid. A118, 351
(1928)

6 P.A.M. Dirac, Proc. Roy. Soc. (London) A126, 360 (1930)

" W. Pauli and V. Weisskopf, Helv. Phys. Acta 7, 709 (1934)

8 See, e.g., QM I, Sect. 2.5.1
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momentum p— <V, (5.2.1)
i

we obtained from the nonrelativistic energy of a free particle

2
p=2 (5.2.2)

- 2m’
the free time-dependent Schrédinger equation

) EAve
lh&d} - 2m

b (5.2.3)

This equation is obviously not Lorentz covariant due to the different orders
of the time and space derivatives.

We now recall some relevant features of the special theory of relativity.”
We will use the following conventions: The components of the space-time
four-vectors will be denoted by Greek indices, and the components of spa-
tial three-vectors by Latin indices or the cartesian coordinates z, y, z. In
addition, we will use Einstein’s summation convention: Greek indices that
appear twice, one contravariant and one covariant, are summed over, the
same applying to corresponding Latin indices.

Starting from x#(s) = (ct, x), the contravariant four-vector representation
of the world line as a function of the proper time s, one obtains the four-
velocity 4*(s). The differential of the proper time is related to dx° via ds =

V1 — (v/c)?dx®, where
v = ¢ (dx/dz") (5.2.4a)

is the velocity. For the four-momentum this yields:

p* = meit(s) = S N (mc) = four-momentum = (E/c) .
1—(v/e)?2 \mv p

(5.2.4D)

In the last expression we have used the fact that, according to relativistic
dynamics, p® = mc/+/1 — (v/c)? represents the kinetic energy of the particle.
Therefore, according to the special theory of relativity, the energy E and the
momentum p,, p,, p. transform as the components of a contravariant four-
vector

E
Pt = (0" p",0%p%) = (;,px,py,pz) : (5.2.5a)

 The most important properties of the Lorentz group will be summarized in Sect.
6.1.
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The metric tensor

10 0 O
0-10 0
00 0 -1
yields the covariant components
E
Pu = Gup” = <;, —p) . (5.2.5Db)

According to Eq. (5.2.4b), the invariant scalar product of the four-
momentum is given by

E2 2 2 2
' = Pt = (5.2.7)

with the rest mass m and the velocity of light c.
From the energy—momentum relation following from (5.2.7),

E = +/p?c® + m2c* (5.2.8)

one would, according to the correspondence principle (5.2.1), initially arrive
at the following wave equation:

ih%w =V —h2e2V2 + m2ct o) . (5.2.9)

An obvious difficulty with this equation lies in the square root of the spatial
derivative; its Taylor expansion leads to infinitely high derivatives. Time and
space do not occur symmetrically.

Instead, we start from the squared relation:

E? = p%c + m?c? (5.2.10)
and obtain
(92

—th = (—R2AV2 +mict)y . (5.2.11)

This equation can be written in the even more compact and clearly Lorentz-
covariant form

mc

<aua“ + (7>2> b =0. (5.2.11')

Here x# is the space—time position vector

ot = (2% = ct, x)



5.2 The Klein—Gordon Equation 119

and the covariant vector

0

nT gk

is the four-dimensional generalization of the gradient vector. As is known
from electrodynamics, the d’Alembert operator O = 9,0 is invariant under
Lorentz transformations. Also appearing here is the Compton wavelength
h/me of a particle with mass m. Equation (5.2.11") is known as the Klein—
Gordon equation. It was originally introduced and studied by Schrédinger,
and by Gordon and Klein.

We will now investigate the most important properties of the Klein—
Gordon equation.

5.2.2 The Continuity Equation
To derive a continuity equation one takes ¢* times (5.2.11")
2
and subtracts the complex conjugate of this equation
2

w(auau (%) )w*:o.
This yields

Y 0,0M") — 0,0t Y* =0

(W 0" — ") = 0.
Multiplying by %, so that the current density is equal to that in the non-
relativistic case, one obtains

0 ih Lo o™ h N w1
5 (g (V5 050 ) ) + 7 g 0T = 69w 0.

2mc? ot 2mi
(5.2.12)

This has the form of a continuity equation

p+divij=0, (5.2.12")
with density

ik L0 oY*

7= omez (1/1 ot ot > (5:2.13a)
and current density

. h’ * *

j==— W'V —9pVuy~) . (5.2.13b)

©2mi
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Here, p is not positive definite and thus cannot be directly interpreted as a
probability density, although ep(x,t) can possibly be conceived as the corre-
sponding charge density. The Klein—Gordon equation is a second-order dif-
ferential equation in ¢ and thus the initial values of ¢ and %—Qf can be chosen
independently, so that p as a function of x can be both positive and negative.

5.2.3 Free Solutions of the Klein—Gordon Equation

Equation (5.2.11) is known as the free Klein—-Gordon equation in order to
distinguish it from generalizations that additionally contain external poten-
tials or electromagnetic fields (see Sect. 5.3.5). There are two free solutions
in the form of plane waves:

Y(x,t) = elBtmpx)/h (5.2.14)
with
E = £/p2c2 + m2ct .

Both positive and negative energies occur here and the energy is not bounded
from below. This scalar theory does not contain spin and could only describe
particles with zero spin.

Hence, the Klein—-Gordon equation was rejected initially because the pri-
mary aim was a theory for the electron. Dirac® had instead introduced a first-
order differential equation with positive density, as already mentioned at the
beginning of this chapter. It will later emerge that this, too, has solutions
with negative energies. The unoccupied states of negative energy describe an-
tiparticles. As a quantized field theory, the Klein—Gordon equation describes
mesons’. The hermitian scalar Klein-Gordon field describes neutral mesons
with spin 0. The nonhermitian pseudoscalar Klein—-Gordon field describes
charged mesons with spin 0 and their antiparticles.

We shall therefore proceed by constructing a wave equation for spin-1/2
fermions and only return to the Klein—-Gordon equation in connection with
motion in a Coulomb potential (7~ -mesons).

5.3 Dirac Equation

5.3.1 Derivation of the Dirac Equation

We will now attempt to find a wave equation of the form

i %—f = (?a’“a,ﬁ + ﬁmcz) v =Hi . (5.3.1)

Spatial components will be denoted by Latin indices, where repeated in-

. . . 2 . .
dices are to be summed over. The second derivative % in the Klein—Gordon
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equation leads to a density p = (¢*%¢ — c.c.). In order that the density be
positive, we postulate a differential equation of first order. The requirement
of relativistic covariance demands that the spatial derivatives may only be of
first order, too. The Dirac Hamiltonian H is linear in the momentum operator
and in the rest energy. The coefficients in (5.3.1) cannot simply be numbers:
if they were, the equation would not even be form invariant (having the same
coefficients) with respect to spatial rotations. a* and 3 must be hermitian
matrices in order for H to be hermitian, which is in turn necessary for a
positive, conserved probability density to exist. Thus o and 3 are N x N
matrices and

U1

P = an N-component column vector .
(Y

We shall impose the following requirements on equation (5.3.1):

(i) The components of 1 must satisfy the Klein-Gordon equation so that
plane waves fulfil the relativistic energy-momentum relation E? = p?c?+
m2ct.

(ii) There exists a conserved four-current whose zeroth component is a pos-
itive density.

(iii) The equation must be Lorentz covariant. This means that it has the
same form in all reference frames that are connencted by a Poincaré
transformation.

The resulting equation (5.3.1) is named, after its discoverer, the Dirac equa-
tion. We must now look at the consequences that arise from the conditions
(i)—(iii). Let us first consider condition (i). The two-fold application of H
yields

2
gt = AT (ol + ) 20y
1J
hme3 < i i 2 2 4
> ('8 + Ba’) 0 + BPmPcty . (5.3.2)
=1

Here, we have made use of 0;0; = 0;0; to symmetrize the first term on the
right-hand side. Comparison with the Klein—Gordon equation (5.2.11") leads
to the three conditions

alad +aodat =201, (5.3.3a)

QB4 pat =0, (5.3.3b)

a'?=p*=1. (5.3.3¢)
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5.3.2 The Continuity Equation

The row vectors adjoint to ¢ are defined by
WL <¢17777[]?(V)
Multiplying the Dirac equation from the left by v, we obtain

he

hw w 1/)T L0i) + me2pT By (5.3.4a)

The Complex conjugate relation reads:

aawt _ ?(&w*)a”w+mc2w*6%- (5.3.4b)

The difference of these two equations yields:

—ih

9 (010) = —e (") 0t + wlaiam) + 5 (uiaty — uigy) |
(5.3.5)

In order for this to take the form of a continuity equation, the matrices «
and 8 must be hermitian, i.e.,

ot =at, pgi=p. (5.3.6)
Then the density

N
p=i =) Yiva (5.3.7a)

a=1

and the current density

i* = cypTaky (5.3.7b)
satisfy the continuity equation

0

prid +divj=0. (5.3.8)
With the zeroth component of j#,

i’=ep, (5.3.9)
we may define a four-current-density

i* = (4% 4% (5.3.9')
and write the continuity equation in the form

gt = %%j%%j’f:o. (5.3.10)

The density defined in (5.3.7a) is positive definite and, within the framework
of the single particle theory, can be given the preliminary interpretation of a
probability density.
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5.3.3 Properties of the Dirac Matrices

The matrices o, B anticommute and their square is equal to 1; see Eq.
(5.3.3a—c). From (a*)? = 32 = 1, it follows that the matrices o and
possess only the eigenvalues +1.

We may now write (5.3.3b) in the form

o = —Baks .
Using the cyclic invariance of the trace, we obtain
Trof = —Trfa*B = —Trap% = —Tra” .

From this, and from an equivalent calculation for 3, one obtains
Trof =Tr3=0. (5.3.11)

Hence, the number of positive and negative eigenvalues must be equal and,
therefore, N is even. N = 2 is not sufficient since the 2 x 2 matrices
1, 0., oy, 0, contain only 3 mutually anticommuting matrices. N = 4 is the
smallest dimension in which it is possible to realize the algebraic structure
(5.3.3a—).

A particular representation of the matrices is

ol = <£ ‘6) . B= <](1)_](1)) : (5.3.12)

where the 4 x 4 matrices are constructed from the Pauli matrices

1 (01 o  (0—i1 3 (1 0
O’—(lo), a—(i 0), e (5.3.13)

and the two-dimensional unit matrix. It is easy to see that the matrices
(5.3.12) satisty the conditions (5.3.3a—c):

i i O—O'i 0 O'i o

The Dirac equation (5.3.1), in combination with the matrices (5.3.12), is re-
ferred to as the “standard representation” of the Dirac equation. One calls 1)
a four-spinor or spinor for short (or sometimes a bispinor, in particular when
1 is represented by two two-component spinors). 1 is called the hermitian
adjoint spinor. It will be shown in Sect. 6.2.1 that under Lorentz transfor-
mations spinors possess specific transformation properties.

5.3.4 The Dirac Equation in Covariant Form

In order to ensure that time and space derivatives are multiplied by matrices
with similar algebraic properties, we multiply the Dirac equation (5.3.1) by
B/c to obtain
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—ihB00) — ihBa' O +mep =0 . (5.3.14)
We now define new Dirac matrices

V=0
i (5.3.15)
,YZ = al .

These possess the following properties:
7? is hermitian and (7°)2 = 1. However, v* is antihermitian.
(M) =—* and (+¥)? = —1.
Proof:
(") = a"B = —Bak = —*,

2
(’yk) = BakBa’ = 1.
These relations, together with
Y+ 450 = BBk + Ba*B =0 and
YA 4y = BatBal + Ba’Bak =0 for k #1
lead to the fundamental algebraic structure of the Dirac matrices
YAV 4 APyt = 2gM71 . (5.3.16)

The Dirac equation (5.3.14) now assumes the form
(—iv“ﬁu + %) b =0. (5.3.17)

It will be convenient to use the shorthand notation originally introduced by
Feynman:

Here, v* stands for any vector. The Feynman slash implies scalar multiplica-
tion by 7y,. In the fourth term we have introduced the covariant components
of the v matrices

Yo = Gu” - (5.3.19)
In this notation the Dirac equation may be written in the compact form

mc

(—i& + ) b =0. (5.3.20)

Finally, we also give the v matrices in the particular representation (5.3.12).
From (5.3.12) and (5.3.15) it follows that
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1 0 , 0ot
0 i g
v = (0 ]1) , Y= (_JZ O) . (5.3.21)

Remark. A representation of the ~ matrices that is equivalent to (5.3.21) and
which also satisfies the algebraic relations (5.3.16) is obtained by replacing

y— MyM™,

where M is an arbitrary nonsingular matrix. Other frequently encountered repre-
sentations are the Majorana representation and the chiral representation (see Sect.
11.3, Remark (ii) and Eq. (11.6.12a-c)).

5.3.5 Nonrelativistic Limit
and Coupling to the Electromagnetic Field

5.3.5.1 Particles at Rest

The form (5.3.1) is a particularly suitable starting point when dealing with
the nonrelativistic limit. We first consider a free particle at rest, i.e., with
wave vector k = 0. The spatial derivatives in the Dirac equation then vanish
and the equation then simplifies to

iha—w = Bmc?y . (5.3.17")
ot
This equation possesses the following four solutions
1 0
+ — M 0 -+ _ ime2 ]_
w% ) —e 7t 0 , 5 ) —e 75—t 0 ’
0 0
(5.3.22)
0 0
- ime?2, [ 0 - ime? 0
wg ) =e¢c h t 1 s d}é ) =e h t 0
0 1

The Q/JYF), wéﬂ and w§_), ¢§_) correspond to positive- and negative-energy
solutions, respectively. The interpretation of the negative-energy solutions
must be postponed until later. For the moment we will confine ourselves to
the positive-energy solutions.

5.3.5.2 Coupling to the Electromagnetic Field

We shall immediately proceed one step further and consider the coupling to
an electromagnetic field, which will allow us to derive the Pauli equation.
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In analogy with the nonrelativistic theory, the canonical momentum p is
e

replaced by the kinetic momentum (p - ), and the rest energy in the

Dirac Hamiltonian is augmented by the scalar electrical potential e®,

0
iha—f = (ca : (p - EA) + Bmc® + e@) (T (5.3.23)
c
Here, e is the charge of the particle, i.e., e = —eq for the electron. At the end

of this section we will arrive at (5.3.23), starting from (5.3.17).

5.3.5.3 Nonrelativistic Limit. The Pauli Equation

In order to discuss the nonrelativistic limit, we use the explicit representation
(5.3.12) of the Dirac matrices and decompose the four-spinors into two two-
component column vectors ¢ and y

Y= (?) , (5.3.24)

X
with
ih% (;{:) = C(Z :j;) +ed (?) + mc? <—¢>Z> , (5.3.25)
where
T=p-— SA (5.3.26)

is the operator of the kinetic momentum.
In the nonrelativistic limit, the rest energy mc” is the largest energy
involved. Thus, to find solutions with positive energy, we write

(i) = e—%t@) : (5.3.27)

where (i) are considered to vary slowly with time and satisfy the equation

ihﬁ ((’0) = C<0' ' TrX) +ed (¢) — 2mc? <0> ) (5.3.25")
ot \ x o-TY X X

In the second equation, hx and e®yx may be neglected in comparison to
2mc?y, and the latter then solved approximately as

2

g - T

= ) 5.3.28
X= 5y ( )
From this one sees that, in the nonrelativistic limit, y is a factor of order
~ v/c smaller than . One thus refers to ¢ as the large, and y as the small,

component of the spinor.
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Inserting (5.3.28) into the first of the two equations (5.3.25") yields

i aa—f = (%(0"7")(0"7‘1’)4—6@) © . (5.3.29)

To proceed further we use the identity
oc-ac-b=a-b+ioc-(axb),

which follows from!%! ¢ig = §;; + ie'/*o* which in turn yields:

5 eh

o-wo - T=7n’+ic-nxam=n’——0-B.
c

Here, we have used!?

—e
C

(m x w)lp = —ih ( > ek (9;AF — AF9;) ¢

= 1@5”’“ (OjAk) Y= i@Bigp
c c

with B = €% kﬁjAk. This rearrangement can also be very easily carried out by
application of the expression

VXAp+AXxVp=VXAp—VepxA=(VxAyp.
We thus finally obtain

Op 1 e \2 eh
ih— = |—(p— —A) ——oc-B+ed|p. .3.29
in ot {Qm (p c ome’ et (5:3:29')

This result is identical to the Pauli equation for the Pauli spinor ¢, as is known
from nonrelativistic quantum mechanics®. The two components of ¢ describe
the spin of the electron. In addition, one automatically obtains the correct
gyromagnetic ratio g = 2 for the electron. In order to see this, we simply
need to repeat the steps familiar to us from nonrelativistic wave mechanics.
We assume a homogeneous magnetic field B that can be represented by the
vector potential A:

10 Here, €% is the totally antisymmetric tensor of third rank

B 1 for even permutations of (123)
g% = { —1 for odd permutations of (123)
0 otherwise

QM I, Eq.(9.18a)

12 Vectors such as E, B and vector products that are only defined as three-vectors
are always written in component form with upper indices; likewise the € tensor.
Here, too, we sum over repeated indices.

13 See, e.g., QM I, Chap. 9.
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1
B=cuwlA, A= §B X X . (5.3.30a)
Introducing the orbital angular momentum L and the spin S as
1
L=xxp, S= 5710' , (5.3.30b)

then, for (5.3.30a), it follows!415 that

Ay p’ € ? 2
ih— = — — L+2S)-B A b . 5.3.31

ot (2m 2mc( +28) Topat Tev)v ( )
The eigenvalues of the projection of the spin operator Sé onto an arbitrary
unit vector & are +h/2. According to (5.3.31), the interaction with the elec-
tromagnetic field is of the form

e2

int — —H - + + e, 0.
H n-B A? 4 ed (5.3.32)

2mc?
in which the magnetic moment

e
= ; = —(L+2S 5.3.33
1 Horbit + #’spln 2mc( + ) ( )
is a combination of orbital and spin contributions. The spin moment is of

magnitude

=9 3.34
/J’spm g2mc ’ (533)

with the gyromagnetic ratio (or Landé factor)

g=2. (5.3.35)
For the electron, % = —£E can be expressed in terms of the Bohr magneton
g = 2%}1 = 0.927 x 10~ %%erg/G.

We are now in a position to justify the approximations made in this

section. The solution ¢ of (5.3.31) has a time behavior that is character-
—Ze(z)

ized by the Larmor frequency or, for e = , by the Rydberg energy
(Ry o< mc?a?, with the fine structure constant o = e2/hc). For the hydrogen
and other nonrelativistic atoms (small atomic numbers Z), mc? is very much
larger than either of these two energies, thus justifying for such atoms the
approximation introduced previously in the equation of motion for y.

14 See, e.g., QM I, Chap. 9.
5 One finds —p~A—A~p:—2A'p:—2% (Bxx)-p=—-—(xxp)-B=-L-B,
since (p-A)=2(V-A)=0.



5.3 Dirac Equation 129

5.3.5.4 Supplement Concerning Coupling
to an Electromagnetic Field

We wish now to use a different approach to derive the Dirac equation in
an external field and, to facilitate this, we begin with a few remarks on
relativistic notation. The momentum operator in covariant and contravariant
form reads:

pp =1iho, and p" =iho" . (5.3.36)
Here, 0, = % and OV = %. For the time and space components, this
implies

0 0 h 0O
0 : 1 .
= = h— = — = h/— = - . 5_3,37
pi=po=iha ., p pr =iy = =155 ( )

The coupling to the electromagnetic field is achieved by making the replace-
ment

€
Pp — Pp — EAM ) (5.3.38)

where A* = (®, A) is the four-potential. The structure which arises here is
well known from electrodynamics and, since its generalization to other gauge
theories, is termed minimal coupling.

This implies

0
ih_u — ih— — -A, (5.3.39)
which explicitly written in components reads:

0 0
1ha—>1ha—e@

R 0 h 0 e_h@ e

Ta.a T . i = T3
i Oxt 10z ¢ i0xt ¢

(5.3.39)

7

For the spatial components this is identical to the replacement %V — ?V —
A or p — p—£A. In the noncovariant representation of the Dirac equation,
the substitution (5.3.39") immediately leads once again to (5.3.23).

If one inserts (5.3.39) into the Dirac equation (5.3.17), one obtains

<—fy“ (ih@u — SA’“‘) + mc) =0, (5.3.40)

which is the Dirac equation in relativistic covariant form in the presence of
an electromagnetic field.
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Remarks:
(i) Equation (5.3.23) follows directly when one multiplies (5.3.40), i.e.

A0 <ihao - EAO) Y= — (ihai - EAi) Y+ mey
c c
by 7°:
ihBot = o (—ih@i — SA”) W+ SAow + mefy
ihﬁz/) =ca- (p — EA) Y+ edY +me By .
ot c
(ii) The minimal coupling, i.e., the replacement of derivatives by derivatives mi-

nus four-potentials, has as a consequence the invariance of the Dirac equation
(5.3.40) with respect to gauge transformations (of the first kind):

Y(z) = e O Y(a) . Au(e) = Au() + duala) -

(iii) For electrons, m = me, and the characteristic length in the Dirac equation
equals the Compton wavelength of the electron

Xe = ho_ 3.8 x 10 Mem .

MeC

Problems

5.1 Show that the matrices (5.3.12) obey the algebraic relations (5.3.3a—c).
5.2 Show that the representation (5.3.21) follows from (5.3.12).

5.3 Particles in a homogeneous magnetic field.

Determine the energy levels that result from the Dirac equation for a (relativistic)
particle of mass m and charge e in a homogeneous magnetic field B. Use the gauge
AY = A' = A3 =0, A? = Bx.



6. Lorentz Transformations
and Covariance of the Dirac Equation

In this chapter, we shall investigate how the Lorentz covariance of the Dirac
equation determines the transformation properties of spinors under Lorentz
transformations. We begin by summarizing a few properties of Lorentz trans-
formations, with which the reader is assumed to be familiar. The reader who
is principally interested in the solution of specific problems may wish to omit
the next sections and proceed directly to Sect. 6.3 and the subsequent chap-
ters.

6.1 Lorentz Transformations

The contravariant and covariant components of the position vector read:

¢ 0 2 =ct , 2t =z , z? = Y, 22 =z contravariant

T, : x9=ct, X =-—-T, Tp=-Y, T3=—2 covariant.

(6.1.1)

The metric tensor is defined by

1 0 0 0
9= (gu) = (¢") = 8 _é _? 8 (6.1.2a)
0 0 0-1
and relates covariant and contravariant components
z, = guwx’, '=g"x,. (6.1.3)
Furthermore, we note that
9", = 9" gor = 0", , (6.1.2b)

ie.,

1000

0100
1 — 23 —
(gy)_((sv)_ 0010

0001
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The d’Alembert operator is defined by

192 o~ D )
O = C_Q@ — W = aua'u = gl“,a“a . (614)
1

1=

Inertial frames are frames of reference in which, in the absence of forces,
particles move uniformly. Lorentz transformations tell us how the coordinates
of two inertial frames transform into one another.

The coordinates of two reference systems in uniform motion must be
related to one another by a linear transformation. Thus, the inhomogeneous
Lorentz transformations (also known as Poincaré transformations) possess
the form

o't = AF 2" +a* (6.1.5)

where A*, and a* are real.
Remarks:

(i) On the linearity of the Lorentz transformation:
Suppose that 2’ and x are the coordinates of an event in the inertial
frames I’ and I, respectively. For the transformation one could write

¥ = f(x).

In the absence of forces, particles in I and I’ move uniformly, i.e., their
world lines are straight lines (this is actually the definition of an iner-
tial frame). Transformations under which straight lines are mapped onto
straight lines are affinities, and thus of the form (6.1.5). The parametric
representation of the equation of a straight line x# = e*s+ d* is mapped
by such an affine transformation onto another equation for a straight line.
(ii) Principle of relativity: The laws of nature are the same in all inertial
frames. There is no such thing as an “absolute” frame of reference. The
requirement that the d’Alembert operator be invariant (6.1.4) yields

A v A
AR gt AP, = g7P (6.1.6a)
or, in matrix form,
AgAT =g (6.1.6b)

0 oz’ 9
ozt Ozt dx'A
5';19‘“/811 = AAuai\guyApV@/J = a;gxpa;

= Akﬂg’“'/lpl, = g’\p .

Proof: 8, = = A*,04
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The relations (6.1.6a,b) define the Lorentz transformations.
Definition: Poincaré group = {inhomogeneous Lorentz transformation,
at # 0}
The group of homogeneous Lorentz transformations contains all elements
with a* = 0.
A homogeneous Lorentz transformation can be denoted by the shorthand
form (4, a), e.g.,

translation group (1, a)

rotation group (D,0)

From the defining equation (6.1.6a,b) follow two important characteristics of
Lorentz transformations:
(i) From the definition (6.1.6a), it follows that (det 4)? = 1, thus

det A = +1 . (6.1.7)

(ii) Consider now the matrix element A = 0, p = 0 of the defining equation
(6.1.6a)

A0, g A%, =1=(A%)" =) (A%)* =1
k

This leads to
Ay>1  or A%< 1. (6.1.8)

The sign of the determinant of A and the sign of A%, can be used to classify
the elements of the Lorentz group (Table 6.1). The Lorentz transformations
can be combined as follows into the Lorentz group £, and its subgroups or
subsets (e.g., Ei means the set of all elements Li):

Table 6.1. Classification of the elements of the Lorentz group

sgn A%, det A
proper orthochronous LL 1 1
improper orthochronous® Lt 1 -1
time-reflection type™* Lt -1 -1
space—time inversion type*** Li -1 1
* spatial reflection ** time reflection ~ *** space—time inversion
1 0 0 O —1000 -1 0 0 0
0-1 0 O 0100 0-1 0 0
P=1o 0-1 0] T=| oo10] P7=| 0 0-1 o] (619
0 0 0-1 0001 0 0 0-1
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L Lorentz group (L.G.)

EL restricted L.G. (is an invariant subgroup)
Ll = L’L uch orthochronous L.G.

Ly = EL U Ei proper L.G.

Lo = El uch orthochronous L.G.

cl =p.cl
Lt =1l
£ =p-T-Ll

The last three subsets of £ do not constitute subgroups.
c=clurc =2l upcl urcl uprel (6.1.10)

L' is an invariant subgroup of £; TL' is a coset to L.

£L is an invariant subgroup of L; PCL, T ﬁl, PTﬁL are cosets of £ with
respect to El. Furthermore, £', £, and Ly are invariant subgroups of £
with the factor groups (F, P), (F,P,T,PT), and (E,T).

Every Lorentz transformation is either proper and orthochronous or can be
written as the product of an element of the proper-orthochronous Lorentz
group with one of the discrete transformations P, T', or PT.

EL, the restricted Lorentz group = the proper orthochronous L.G. consists of
all elements with det A = 1 and /100 > 1; this includes:

(a) Rotations

(b) Pure Lorentz transformations (= transformations under which space and
time are transformed). The prototype is a Lorentz transformation in the
x! direction

L% L%, 00 coshn —sinhn 00

| LYy L*, 00| | —sinhn coshn 00
Lim=1"¢" 010~ 0 010
0 001 0 001

1 __ B
W ey 00
——L L_00
= \/1—,82 \/1_52 , (6111)
0 010
0 001

with tanhn = (3. For this Lorentz transformation the inertial frame I’
moves with respect to I with a velocity v = ¢ in the ! direction.
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6.2 Lorentz Covariance of the Dirac Equation

6.2.1 Lorentz Covariance and Transformation of Spinors

The principle of relativity states that the laws of nature are identical in every
inertial reference frame.

We consider two inertial frames I and I’ with the space—time coordinates
x and z’. Let the wave function of a particle in these two frames be v and
1, respectively. We write the Poincaré transformation between I and I’ as

¥=Ar+a. (6.2.1)

It must be possible to construct the wave function 1’ from . This means
that there must be a local relationship between v’ and :

(@) = Fb(e) = FO(A™ (@' — a) . (6.2.2)

The principle of relativity together with the functional relation (6.2.2) neces-
sarily leads to the requirement of Lorentz covariance: The Dirac equation in
I is transformed by (6.2.1) and (6.2.2) into a Dirac equation in I’. (The Dirac
equation is form invariant with respect to Poincaré transformations.) In order
that both v and ¢’ may satisfy the linear Dirac equation, their functional
relationship must be linear, i.e.,

Y (a') = S(A)p(z) = S(A)Y(A™ (@' — a)) . (6.2.3)

Here, S(A) is a 4 x 4 matrix, with which the spinor v is to be multiplied. We
will determine S(A) below. In components, the transformation reads:

Un(a) =Y Sap(App(A~ (@' —a)) . (6.2.3)
B=1

The Lorentz covariance of the Dirac equation requires that 1)’ obey the equa-
tion

(=in"8), +m)¢' (') =0,  (c=1, h=1) (6.2.4)
where
0
o
= ox'm

The v matrices are unchanged under the Lorentz transformation. In order
to determine S, we need to convert the Dirac equation in the primed and
unprimed coordinate systems into one another. The Dirac equation in the
unprimed coordinate system

(=70, + m)(z) = 0 (6.2.5)
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can, by means of the relation

0 oz’ 0

oxH - oxH Oz’

= A" ,0,
and
ST/ (a') = v(a)
be brought into the form
(—iy*A¥ 0, +m)S~H (A (2') = 0. (6.2.6)
After multiplying from the left by S, one obtains?
—1SAY ST () + map (2)) = 0. (6.2.6")

From a comparison of (6.2.6") with (6.2.4), it follows that the Dirac equation
is form invariant under Lorentz transformations, provided S(A) satisfies the
following condition:

S(A) ¥ S(A) = A (6.2.7)

It is possible to show (see next section) that this equation has nonsingu-
lar solutions for S(A).2 A wave function that transforms under a Lorentz
transformation according to ¢’ = S is known as a four-component Lorentz
spinor.

6.2.2 Determination of the Representation S(A)
6.2.2.1 Infinitesimal Lorentz Transformations

We first consider infinitesimal (proper, orthochronous) Lorentz transforma-
tions

A, =g, + AwY, (6.2.8a)
with infinitesimal and antisymmetric Aw”*
At = —Awh” . (6.2.8b)

This equation implies that Aw”* can have only 6 independent nonvanishing
elements.

! We recall here that the A"
the ~ matrices.

? The existence of such an S(A) follows from the fact that the matrices A%y" obey
the same anticommutation rules (5.3.16) as the v by virtue of (6.1.6a), and from
Pauli’s fundamental theorem (property 7 on page 146). These transformations
will be determined explicitly below.

. are matrix elements that, of course, commute with
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These transformations satisfy the defining relation for Lorentz transforma-
tions

A v A
A 'ug/‘ Apu =g P ) (616&)
as can be seen by inserting (6.2.8) into this equation:
9,9 g7, + A + AwPr + 0 ((Aw)?) = g™ . (6.2.9)

Each of the 6 independent elements of Aw*” generates an infinitesimal
Lorentz transformation. We consider some typical special cases:

AW, = —AW” = —AB: Transformation onto a coordinate (6.2.10)
system moving with velocity cApS
in the z direction

Aw'y = —Aw'? = Ap: Transformation onto a coordinate (6.2.11)
system that is rotated by an angle
Agp about the z axis. (See Fig. 6.1)

The spatial components are transformed under this passive transformation as fol-
lows:

= ' + Apz? 0 €1 €2 €3
t? = —Apx' +2° or X =x+ 0 xx=x+|0 0 —Ap

3313 —_ CES —A(p .%’1 x2 x3

(6.2.12)
X
y
Ay Fig. 6.1. Infinitesimal rotation, passive trans-
z! formation

It must be possible to expand S as a power series in Aw"*. We write
S=1+7, St'=1-71, (6.2.13)

where 7 is likewise infinitesimal i.e. of order O(Aw"*). We insert (6.2.13) into
the equation for S, namely S~1y#S = A* ~V and get

(L =7y (L+7) =" + 447 = myH =4 + Ak 4", (6.2.14)

from which the equation determining 7 follows as
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YT — Tyt = Awt Y. (6.2.147)

To within an additive multiple of 1, this unambiguously determines 7. Given
two solutions of (6.2.14"), the difference between them has to commute with
all v# and thus is proportional to 1 (see Sect. 6.2.5, Property 6). The nor-
malization condition det. S = 1 removes this ambiquity, since it implies to
first order in Aw*” that

detS=det(l+7)=detl +Trr=1+Tr7=1. (6.2.15)
It thus follows that
Trr=0. (6.2.16)

Equations (6.2.14") and (6.2.16) have the solution

1 .
T= gAWW(%L’YV — Y Wu) = _iAwWUW , (6.2.17)
where we have introduced the definition
i
Ouv = 5 [’Y;n'yr/] . (6218)

Equation (6.2.17) can be derived by calculating the commutator of 7 with
~#; the vanishing of the trace is guaranteed by the general properties of the
~ matrices (Property 3, Sect. 6.2.5).

6.2.2.2 Rotation About the z Axis

We first consider the rotation Rs about the z axis as given by (6.2.11). Ac-
cording to (6.2.11) and (6.2.17),

1
T(R3) = 5490012 ;

and with
2, _i[ =i _ 0 of 0 o2\ (0% 0
=012 = 5 Y1, 7Y2] = 17172 = _o! 020 ) " \oo3
(6.2.19)
it follows that
. . 50
S:1+%A¢012 :1+%A¢<% 0—3> . (6.2.20)

By a succession of infinitestimal rotations we can construct the transfor-
mation matrix S for a finite rotation through an angle ¥J. This is achieved by
decomposing the finite rotation into a sequence of N steps /N
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. N
W) = S0) = Jim (14 55002) 0(a)

= e%ﬂ0121/)
= (cosg +ic!? sin g) U(z) . (6.2.21)

For the coordinates and other four-vectors, this succession of transformations
implies that

0 000 0 000
Y10 010 Y10 010
/— ] —_— ) —_—
x_Nlinoo<ﬂ+N 0-100 ) <]1+N 0-100 )’”
0O 000 0 000
0 000 1 0 00
0 010 0 cos? sind 0
= exp (VU 0-100 }x: 0 —sin? cosv 0 T (6.2.22)
0 000 0 0 01

and is thus identical to the usual rotation matrix for rotation through an
angle 9. The transformation S for rotations (6.2.21) is unitary (S~! = ST).
From (6.2.21), one sees that

S(2r) = -1 (6.2.23a)
Sr) =1 . (6.2.23D)

This means that spinors do not regain their initial value after a rotation
through 27, but only after a rotation through 47, a fact that is also confirmed
by neutron scattering experiments®. We draw attention here to the analogy
with the transformation of Pauli spinors with respect to rotations:

390 () (6.2.24)

6.2.2.3 Lorentz Transformation Along the x! Direction
According to (6.2.10),
At = AB (6.2.25)

and (6.2.17) becomes

1 1
7(L1) = 5ABYN = 5 AP . (6.2.26)

We may now determine S for a finite Lorentz transformation along the 2!

axis. For the velocity ¢, we have tanhn = 2.

3 H. Rauch et al., Phys. Lett. 54A, 425 (1975); S.A. Werner et al., Phys. Rev. Lett.
35, 1053 (1975); also described in J.J. Sakurai, Modern Quantum Mechanics,

p-162, Addison-Wesley, Red Wood City (1985).
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The decomposition of 7 into N steps of 3+ leads to the following transforma-
tion of the coordinates and other four-vectors:

o v UN_—
v

N—o0 N N Vo N v
g*, =",
0 -100 1000
» | —-1000 o 10100 3
= 0 000]" "= 0000 |~ =1
0 000 0000
v == (14nl+ SPl 4 2T+ L2 x
I T T T
't = (1 —I? +IQCosh77+Isinh77)#ymV
coshn —sinhn 00 20
—sinhn coshn 00 x!
= 0 " O” o (6.2.27)
0 0 01 3

The N-fold application of the infinitesimal Lorentz transformation

U U
L(—):n i
NV Y

then leads, in the limit of large N, to the Lorentz transformation (6.1.11)

coshn —sinhn 00
—sinhn coshn 00
0 0 10
0 0 01

Li(n) =e" = (6.2.27")

We note that the NV infinitesimal steps of £+ add up to n. However, this does
not imply a simple addition of velocities.
We now calculate the corresponding spinor transformation

N
1 .
Sl = Jim (1+§%al> - (6.2.28)

n . n
= 1 cosh = h =
Ccos 2+alsln 9

For homogenous restricted Lorentz transformations, S is hermitian (S(L1)T =
S(L1)).

For general infinitesimal transformations, characterized by infinitesimal
antisymmetric Aw*”, equation (6.2.17) implies that

S(A) =1 — iJWAw‘“’ . (6.2.29a)
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This yields the finite transformation

S(A) = e~ wome"” (6.2.29b)

with w"” = —w”"* and the Lorentz transformation reads A = e, where the

matrix elements of w are equal to w”,. For example, one can represent a
rotation through an angle ¥ about an arbitrary axis n as

S = ez (6.2.29¢)
where
o0
> = (o U) . (6.2.29d)

6.2.2.4 Spatial Reflection, Parity

The Lorentz transformation corresponding to a spatial reflection is repre-
sented by

10 0 O
0-10 0
T
At = 00 -1 0 (6.2.30)
00 0 —1
The associated S is determined, according to (6.2.7), from
4
STINMS = At =Y g = gt (6.2.31)
v=1

where no summation over p is implied. One immediately sees that the solution
of (6.2.31), which we shall denote in this case by P, is given by
S =P=¢e¥y0, (6.2.32)

Here, €l is an unobservable phase factor. This is conventionally taken to
have one of the four values 1, +i; four reflections then yield the identity 1.
The spinors transform under a spatial reflection according to

V(@) =0/ (K, 8) = (%, 1) = 99 0(a) = 91 % (—x 1) . (6.2.33)
The complete spatial reflection (parity) transformation for spinors is denoted
by

P =ey0p0 (6.2.33")
where P(©) causes the spatial reflection x — —x.

. . 1 .
From the relationship v° = 8 = ( 0 _](1)) one sees in the rest frame of
the particle, spinors of positive and negative energy (Eq. (5.3.22)) that are
eigenstates of P — with opposite eigenvalues, i.e., opposite parity. This means

that the intrinsic parities of particles and antiparticles are opposite.
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6.2.3 Further Properties of S

For the calculation of the transformation of bilinear forms such as j*(z), we
need to establish a relationship between the adjoint transformations ST and

S—t

Assertion:

S0 = py05—1 | (6.2.34a)
where

b=+1 for A% { i J_ri (6.2.34b)
Proof: We take as our starting point Eq. (6.2.7)

STIyHS = A A AF real, (6.2.35)
and write down the adjoint relation

(A4 AN = gTyrtgt=1 (6.2.36)
The hermitian adjoint matrix can be expressed most concisely as

At = OO (6.2.37)

By means of the anticommutation relations, one easily checks that (6.2.37)
is in accord with v°f = 49~k = —~* We insert this into the left- and
the right-hand sides of (6.2.36) and then multiply by 7° from the left- and
right-hand side to gain

,yOApLU,YO,YV,YO,YO _ ,YOST,YO,YM,YOST*LYO
AF ¥ = SIS = 08T 0k (40 5T 01

since (70)_1 = ~Y. Furthermore, on the left-hand side we have made the
substitution A* 4" = S~1y#S. We now multiply by S and S—1:

Y= 577819091 (77819°) TS T = (87051 ) (57781 ) T

Thus, S7°ST~1Y commutes with all 4* and is therefore a multiple of the unit
matrix

SAYSTA0 =1, (6.2.38)
which also implies that

Sy0ST = by0 (6.2.39)
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and yields the relation we are seeking?
S0 = (571 =by057 1. (6.2.34a)

Since (7°)" = 4° and S4"ST are hermitian, by taking the adjoint of (6.2.39)
one obtains S7°ST = b*4°, from which it follows that

b* = b (6.2.40)

and thus b is real. Making use of the fact that the normalization of S is fixed
by det S = 1, on calculating the determinant of (6.2.39), one obtains b* = 1.
This, together with (6.2.40), yields:

b=+l (6.2.41)
The significance of the sign in (6.2.41) becomes apparent when one considers
§18 = 81799°8 = 177571975 = 1A% 7”
=0A% 1 + i bAY, A0k (6.2.42)

~—~—

k=1 Y

STS has positive definite eigenvalues, as can be seen from the following.
Firstly, det STS = 1 is equal to the product of all the eigenvalues, and these
must therefore all be nonzero. Furthermore, SS is hermitian and its eigen-
functions satisfy STSv, = at),, whence

apive = i STSY, = (Sva) St > 0

and thus a > 0. Since the trace of SS9 is equal to the sum of all the eigen-
values, we have, in view of (6.2.42) and using Tr a* = 0,

0 < Tr(S1S) =4bA°, .

Thus, bA°, > 0. Hence, we have the following relationship between the signs
of A% and b:

A0 > 1 for b=1

6.2.34b
AP < -1 for b=-1. ( )
For Lorentz transformations that do not change the direction of time, we
have b = 1; while those that do cause time reversal have b = —1.

* Note: For the Lorentz transformation Ll (restricted L.T. and rotations) and
for spatial reflections, one can derive this relation with b = 1 from the explicit
representations.
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6.2.4 Transformation of Bilinear Forms

The adjoint spinor is defined by
P =1Ty0 . (6.2.43)

We recall that 1 is referred to as a hermitian adjoint spinor. The additional
introduction of 1 is useful because it allows quantities such as the current
density to be written in a concise form. We obtain the following transforma-
tion behavior under a Lorentz transformation:

W =8¢ = T = ¢St = ¢’ = 810 = byly 5!
thus,

Y =bySTh. (6.2.44)
Given the above definition, the current density (5.3.7) reads:

" = ety Oyt = ety (6.2.45)
and thus transforms as

G =cbpSTINFSY = A* chypyp = bAF G . (6.2.46)

Hence, j# transforms in the same way as a vector for Lorentz transformations
without time reflection. In the same way one immediately sees, using (6.2.3)
and (6.2.44), that ¢ (z)y(x) transforms as a scalar:

V' ()’ (2') 15_( o)S™ISy(a')
= b)Y (x) .
We now summarize the transformation behavior of the most important bi-

linear quantities under orthochronous Lorentz transformations , i.e., transfor-
mations that do not reverse the direction of time:

(6.2.47a)

V(@) (@) = Y(@ )w( ) scalar (6.2.47a)
P (2 (2) = AP p(z)y () vector (6.2.47b)
P (2ot (2)) = A“ A p(z)oP () antisymmetric tensor
(6.2.47¢)
V(2 )5y (2') = (det A)A* b(x)y57 (z)  pseudovector  (6.2.47d)
O (25 (2)) = (det A)p(x)y5e(x) pseudoscalar,  (6.2.47¢)

where v5 = i7°919293. We recall that det A = £1; for spatial reflections the
sign is —1.
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6.2.5 Properties of the v Matrices
We remind the reader of the definition of ¥° from the previous section:
5 = 7° = iy0y1y243 (6.2.48)

and draw the reader’s attention to the fact that somewhat different definitions
may also be encountered in the literature. In the standard representation
(5.3.21) of the Dirac matrices, 7° has the form

v = (]? g) . (6.2.48")
The matrix v° satisfies the relations

{+*v*} =0 (6.2.49a)
and

(") =1. (6.2.49b)

By forming products of v*, one can construct 16 linearly independent 4 x 4
matrices. These are

ré = (6.2.50a)

Iy =, (6.2.50b)
i

Fg;, =0Ouv = 5[’7;}»'71/] (6.2.50C)

I = (6.2.50d)

rf=x;. (6.2.50¢)

The upper indices indicate scalar, vector, tensor, axial vector (= pseudovec-
tor), and pseudoscalar. These matrices have the following properties®:

1. (I')? =+1 (6.2.51a)
2. For every I'* except I'® = 1, there exists a I'®, such that
rert=-rere. (6.2.51b)
3. For a # S we have TrI'* = 0. (6.2.51c¢)
Proof: Tr I'(I'°)? = —Tr 11" = —Tr 7*(1'%)?

Since (I'")* = #1, it follows that Tr I'* = —Tr I'®, thus proving the
assertion.

® Only some of these properties will be proved here; other proofs are included as
problems.
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4. For every pair I'*, I'® a # b there is a I'® # 1, such that I,I}, = 31,
g =+1, +i.
Proof follows by considering the I'.

5. The matrices I'* are linearly independent.
Suppose that > z,'* = 0 with complex coefficients z,. From property 3 above

one then has
TeraF“:xs:0.

Multiplication by I, and use of the properties 1 and 4 shows that subsequent
formation of the trace leads to x, = 0.

6. If a 4 x 4 matrix X commutes with every v, then X oc 1.

7. Given two sets of v matrices, v and 7/, both of which satisfy

{77} = 29",

there must exist a nonsingular M
= MyPMTE (6.2.51d)

This M is unique to within a constant factor (Pauli’s fundamental theo-
rem).

6.3 Solutions of the Dirac Equation for Free Particles

6.3.1 Spinors with Finite Momentum
We now seek solutions of the free Dirac equation (5.3.1) or (5.3.17)
(—i@ + m)(z) =0 . (6.3.1)

Here, and below, we will set A = ¢ = 1.
For particles at rest, these solutions [see (5.3.22)] read:

)(z) = up(m,0)e” ™ r=1,2
v @ ( ) . (6.3.2)
V(@) = v,.(m, 0) ™ |
for the positive and negative energy solutions respectively, with

1 0

ui(m,0) = 0 uz(m,0) =

) O 9 ) O )

0 0 (6.3.3)
0 0 o
0 0

v1(m,0) = E va(m,0) = ol
0 1
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and are normalized to unity. These solutions of the Dirac equation are eigen-
functions of the Dirac Hamiltonian H with eigenvalues =m, and also of the
operator (the matrix already introduced in (6.2.19))

i a3 0
oo b= (7.8) 65

with eigenvalues +1 (for r = 1) and —1 (for r = 2). Later we will show that
01?2 is related to the spin.

We now seek solutions of the Dirac equation for finite momentum in the
form®

v (z) = up(k)e * positive energy (6.3.5a)
(@) = vp(k)eF® negative energy (6.3.5Db)

with k% > 0. Since (6.3.5a,b) must also satisfy the Klein—Gordon equation,
we know from (5.2.14) that

ku k" =m? (6.3.6)

or

E=k = (K +m?)"?, (6.3.7)
where k° is also written as F; i.e., k is the four-momentum of a particle with
mass m.

The spinors u, (k) and v, (k) can be found by Lorentz transformation of
the spinors (6.3.3) for particles at rest: We transform into a coordinate system
that is moving with velocity —v with respect to the rest frame and then, from
the rest-state solutions, we obtain the free wave functions for electrons with
velocity v. However, a more straightforward approach is to determine the
solutions directly from the Dirac equation. Inserting (6.3.5a,b) into the Dirac
equation (6.3.1) yields:

(K —m)u,.(k) =0 and (k+m)v.(k)=0. (6.3.8)

Furthermore, we have

1
kit = kuy"ky” = l{:uk,ji{v’“‘,’y”} =k, k,g"" . (6.3.9)
Thus, from (6.3.6), one obtains
(F—m)(E+m)=k*—m?=0. (6.3.10)

Hence one simply needs to apply (¥ + m) to the w,(m,0) and (f —m) to
the v,.(m,0) in order to obtain the solutions u, (k) and v, (k) of (6.3.8). The

6 We write the four-momentum as k, the four-coordinates as x, and their scalar
product as k - x.
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normalization remains as yet unspecified; it must be chosen such that it is
compatible with the solution (6.3.3), and such that )¢ transforms as a scalar
(Eq. (6.2.47a)). As we will see below, this is achieved by means of the factor
1/4/2m(m + E):

E+m 1/2
up(k) = —EET o (m,0) = ( o ) N (6.3.11a)
' V2m(m+E) ok
@m(m + E)2 X
o-k
fem @m(m + B))2 X
’Ur(k) = \/mw(m, O) = (E+m>1/2 . (6311b)
2m xr

Here, the solutions are represented by u,(m,0) = (%) and v.(m,0) = ()?T)
with x1 = ((1)) and y2 = ((1))

In this calculculation we have made use of
Xr _ 0 ]1 0 X 0 ) O'i Xr
f(5) - (h )+ (%] (%)
_ koxr n 0 _ Exr
N 0 Eioix, |  \k-ox.

0 0 Eolx,
_ — =1,2.

From (6.3.11a,b) one finds for the adjoint spinors defined in (6.2.43)

and

_ o K+ m .
ur(k) = ur(m, )—Qm(m 5 (6.3.12a)
5 (k) = B, (m, 0)——L 2™ (6.3.12b)

>\/2m(m—|—E) '

o m)~0 0 "
Proof: iy (k) = ul(k)y° = uf.(m, 0) L — o] (1, 0) teti)

v 2m(m+E) \2m(m+E)’

since v*T = 4%4#~% and (4°)? = 1
Furthermore, the adjoint spinors satisfy the equations

(k) (f—m)=0 (6.3.13a)
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and
(k) (K+m)=0, (6.3.13b)

as can be seen from (6.3.10) and (6.3.12a,b) or (6.3.8).

6.3.2 Orthogonality Relations and Density

We shall need to know a number of formal properties of the solutions found
above for later use. From (6.3.11) and (6.2.37) it follows that:

(f +m)?

tr (ks (K) =t (m, 0) s s

s(m,0). (6.3.14a)

With
@ (m, 0)(K + m)*us(m, 0) = @ (m, 0)(* + 2mk + m*)us(m, 0)

- (m,0)(2m” + 2mk)us (m, 0)

= ur(m, 0)(2m* 4 2mk°~°)us (m, 0) (6.3.14b)

= 2m(m + E)u,(m, 0)us(m, 0)

= 2m(m + E)b.s ,

(6.3.14c)
= 4yr(m,0) 0 vs(m,0) =0
and a similar calculation for v,(k), equations (6.3.14a,b) yield the
orthogonality relations
Ur(k)us(k) = Ops ur(k)vs(k) = 0
(1) s (1) (1) 4 (8) -

Grk)vs(k) = —6ps  Tp(k)us(k) = 0

Remarks:

(i) This normalization remains invariant under orthochronous Lorentz trans-
formations:

u. ul, —uTST’yOSuS—u 08t Suy =ty us = 0y . (6.3.16)
(i) For these spinors, ¥ (x)1(x) is a scalar,
P () (2) = *%a, (k)u, (ke ™ =1, (6.3.17)

is independent of k, and thus independent of the reference frame.
In general, for a superposition of positive energy solutions, i.e., for
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¢(+) Zcrur , with Z ler|? = (6.3.18a)
one has the relation
2
P (@)™ (@) =Y ap(k)us(k)cfeo =Y e > =1. (6.3.18b)
T,8 r=1

Analogous relationships hold for ().

(iii) If one determines u, (k) through a Lorentz transformation corresponding
to —v, this yields exactly the above spinors. Viewed as an active trans-
formation, this amounts to transforming w,(m, 0) to the velocity v. Such
a transformation is known as a “boost”.

The density for a plane wave (¢ = 1) is p = j% = 4% . This is not a
Lorentz-invariant quantity since it is the zero-component of a four-vector:

D @)y o (@) = ar (k)7° us(k)

= a,(k ){% i us(k) = gam (6.3.19a)
G @) P (@) = 0 (k)vovs(k)
_ ,.(k){k 2} k) = %5 (6.3.19b)

In the intermediate steps here, we have used us(k) = (F/m)us(k), us(k) =
us(k)(k/m) (Egs. (6.3.8) and (6.3.13)) etc.

Note. The spinors are normalized such that the density in the rest frame is unity.
Under a Lorentz transformation, the density times the volume must remain con-

stant. The volume is reduced by a factor /1 — 42 and thus the density must increase

by the reciprocal factor 1 = £
V1i-52

1-32 m

We now extend the sequence of equations (6.3.19).

For w(—b—) <.’L‘> — e—i(koxo_k.x)ur(k)

‘s

(1040 - (6.3.20)
and {7 (z) = ! F T RNy ()

with the four-momentum k = (k°, —k), one obtains
Coik040_ 7
i @)y 9P () = e (k)7  us ()
1 . ~
- ie—%“w%r(lz) ( %0 +40E £ ) us(k) (6.3.19¢)

=0

since the terms proportional to kg cancel and since {k‘mi,vo} = 0. In this
sense, positive and negative energy states are orthogonal for opposite energies
and equal momenta.
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6.3.3 Projection Operators

The operators

_ Ef+m
- 2m

A (k) (6.3.21)

project onto the spinors of positive and negative energy, respectively:

Ajup (k) = up (k) A_vp (k) = v (k)

Avon(k) =0 A un(k) 0 (6.3.22)

Thus, the projection operators A (k) can also be represented in the form

e (6.3.23)
A(k) == v (k) @ 0. (k)
r=1,2
The tensor product ® is defined by
(a®Db)ag = anbg . (6.3.24)

In matrix form, the tensor product of a spinor a and an adjoint spinor b reads:

ai a1§1 a1§2 a1§3 a1§4
az | 7 7 7 7\ _ | a2b1 azbz azbz azba
as (b1, b2, ba ba) = azbi asbz azbs asbs
as asb1 asbz asbs asba

The projection operators have the following properties:
AL (k) = Ax(k) (6.3.25a)
TrAL(k) =2 (6.3.25Db)
Ap(B)y+A_(k)=1. (6.3.25¢)
Proof:
(Ffk+m)® B E2km+m?  m®E£2km+m®

4m? 4m? 4m?
_ 2m(EKE+m)
o 4m? = A=(k)

At (k)Q =

Tr A+ (k) = dm _ 2
2m
The validity of the assertion that A+ projects onto positive and negative energy
states can be seen in both of the representations, (6.3.21) and (6.3.22), by applying
them to the states u,(k) and v-(k). A further important projection operator, P(n),
which, in the rest frame projects onto the spin orientation n, will be discussed in
Problem 6.15.
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Problems

6.1 Prove the group property of the Poincaré group.

6.2 Show, by using the transformation properties of z,, that 0" = 9/0z, (0, =
0/0z") transforms as a contravariant (covariant) vector.

6.3 Show that the N-fold application of the infinitesimal rotation in Minkowski
space (Eq. (6.2.22))

0 000
9 (o o010
A=1+510-100
0 000

leads, in the limit N — oo, to a rotation about the z axis through an angle ¥ (the
last step in (6.2.22)).

6.4 Derive the quadratic form of the Dirac equation

5

[(ma - EA) _ I (B +iZB) —m*P| =0
c c

for the case of external electromagnetic fields. Write the result using the electro-

magnetic field tensor Fj, = A, — A, and also in a form explicitly dependent

on F and B.

Hint: Multiply the Dirac equation from the left by ~+” (ih&, — %A,,) + mc and, by
using the commutation relations for the v matrices, bring the expression obtained
into quadratic form in terms of the field tensor

2
[(ih@— EA) — Z—EJ“VFW —m2c? P =0.

The assertion follows by evaluating the expression " F),, using the explicit form
of the field tensor as a function of the fields E and B.

6.5 Consider the quadratic form of the Dirac equation from Problem 6.4 with the
fields E = Ey(1,0,0) and B = B(0,0,1), where it is assumed that Ey/Bec < 1.
Choose the gauge A = B (0, z,0) and solve the equation with the ansatz

d)(x) — efiEt/hei(kyy‘Fk‘zz)so(x)@ 7

where @ is a four-spinor that is independent of time and space coordinates. Cal-
culate the energy eigenvalues for an electron. Show that the solution agrees with
that obtained from Problem 5.3 when one considers the nonrelativistic limit, i.e.,
Eo/Be < 1.

Hint: Given the above ansatz for i, one obtains the following form for the quadratic
Dirac equation:

[K(2,0:,)1 + M]p(x)® =0,
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where K(z,0;) is an operator that contains constant contributions, 9, and x. The
matrix M is independent of 9, and x; it has the property M? o 1. This suggests
that the bispinor ¢ has the form ¢ = (1 + AM)®q. Determine A and the eigenval-
ues of M. With these eigenvalues, the matrix differential equation reverts into an
ordinary differential equation of the oscillator type.

6.6 Show that equation (6.2.14")
7] = Awty,
is satisfied by

1 y
T = gAw“ (Yu vy = o) -

6.7 Prove that 4T = 404440,

6.8 Show that the relation
ST'YO —_ b’yOS_l
is satisfied with b = 1 by the explicit representations of the elements of the Poincaré

group found in the main text (rotation, pure Lorentz transformation, spatial reflec-
tion).

6.9 Show that v¥(z)ys¢(z) is a pseudoscalar, ¥ (z)ysy"9(z) a pseudovector, and
Y(z)o"(x) a tensor.

6.10 Properties of the matrices I'“.
Taking as your starting point the definitions (6.2.50a—e), derive the following prop-
erties of these matrices:

(i) For every I'* (except I'¥) there exists a I'® such that I'*I"® = —"°1°.
(ii) For every pair I'*, I'’, (a # b) there exists a I'° # 1 such that I'*I"* = 3I"°
with 8 = +1, +i.

6.11 Show that if a 4 X 4 matrix X commutes with all 4*, then this matrix X is
proportional to the unit matrix.

Hint: Every 4 x 4 matrix can, according to Problem 6.1, be written as a linear
combination of the 16 matrices I'* (basis!).

6.12 Prove Pauli’s fundamental theorem for Dirac matrices: For any two four-
dimensional representations 7y, and fy;L of the Dirac algebra both of which satisfy
the relation

{1t = 2900
there exists a nonsingular transformation M such that
-1
’yL =My, M .

M is uniquely determined to within a constant prefactor.
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6.13 From the solution of the field-free Dirac equation in the rest frame, determine
the four-spinors ¥~ () of a particle moving with the velocity v. Do this by applying
a Lorentz transformation (into a coordinate system moving with the velocity —v)
to the solutions in the rest frame.

6.14 Starting from

ARy =Y wkonk), Ak =- 3 vk o6k,

r=1,2

prove the validity of the representations for A+ (k) given in (6.3.22).

6.15 (i) Given the definition P(n) = % (1+~s1t), show that, under the assumptions

n? = —1 and n,k* = 0, the following relations are satisfied

A (k), P(m)] =0
Ay (K)P(n) + A_(k)P(n) + Ay (K)P(—n) + A_(k)P(—n) =1 |
Tr[As(k)P(£n)] =1 |

P(n)* = P(n)

a
b

C

— N~

N . . . (140 0
(ii) Consider the special case n = (0,é.) where P(n) = 3 0 1-0o°)



7. Orbital Angular Momentum and Spin

We have seen that, in nonrelativistic quantum mechanics, the angular mo-
mentum operator is the generator of rotations and commutes with the Hamil-
tonians of rotationally invariant (i.e., spherically symmetric) systems?!. It thus
plays a special role for such systems. For this reason, as a preliminary to the
next topic — the Coulomb potential — we present here a detailed investigation
of angular momentum in relativistic quantum mechanics.

7.1 Passive and Active Transformations

For positive energy states, in the non-relativistic limit we derived the Pauli
equation with the Landé factor g = 2 (Sect. 5.3.5). From this, we concluded
that the Dirac equation describes particles with spin S = 1/2. Following on
from the transformation behavior of spinors, we shall now investigate angular
momentum in general.

In order to give the reader useful background information, we will start
with some remarks concerning active and passive transformations. Consider a
given state Z, which in the reference frame [ is described by the spinor ¢ (x).
When regarded from the reference frame I, which results from I through the
Lorentz transformation

¥ = Az, (7.1.1)
the spinor takes the form,
Y (x') = Sy(A~ 1), passive with A . (7.1.2a)

A transformation of this type is known as a passive transformation. One
and the same state is viewed from two different coordinate systems, which is
indicated in Fig. 7.1 by ¥ (x) = ¢'(2').

On the other hand, one can also transform the state and then view the
resulting state Z' exactly as the starting state Z from one and the same
reference frame I. In this case one speaks of an active transformation. For
vectors and scalars, it is clear what is meant by their active transformation

! See QM I, Sect. 5.1
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(rotation, Lorentz transformation). The active transformation of a vector
by the transformation A corresponds to the passive transformation of the
coordinate system by A~!. For spinors, the active transformation is defined
in exactly this way (see Fig. 7.1).

The state Z’, which arises through the transformation A~!, appears in I
exactly as Z in I, i.e.,

V' (x) = Sh(A ™ x) active with A" (7.1.2b)

Fig. 7.1. Schematic representa-
tion of the passive and active
transformation of a spinor; the en-
closed area is intended to indicate
the region in which the spinor is
finite

The state Z”, which results from Z through the active transformation A,
by definition appears the same in I’ as does Z in I, i.e., it takes the form
Y(2'). Since I is obtained from I’ by the Lorentz transformation A=, in I
the spinor Z” has the form

V" (x) = ST(Ax) | active with A . (7.1.2¢)

7.2 Rotations and Angular Momentum
Under the infinitesimal Lorentz transformation

A, =gl + At (AT, =g, - Al (7.2.1)
a spinor ¥ (x) transforms as

Y'(x") = Sy(A~t2’)  passive with A (7.2.2a)
or

Y (x) = Sy(A~ )  active with A™1 . (7.2.2b)
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We now use the results gained in Sect. 6.2.2.1 (Eqgs. (6.2.8) and (6.2.13)) to
obtain

W (x) = (1 — i AW 6, ) (2° — AwP,z") . (7.2.3)
Taylor expansion of the spinor yields (1 — Aw*,2¥9,,) ¥ (x) , so that

U(@) = (14 A (5 0+ 2,80)) () (7.2.3)

We now consider the special case of rotations through A¢g, which are repre-
sented by

Aw® = —€TF AQF (7.2.4)
(the direction of A specifies the rotation axis and |Ag| the angle of rota-
tion). If one also uses

k

(see Eq. (6.2.19)) one obtains for (7.2.3)
Y (x) = <1 + Aw® (‘Z eIk ok 42,0 )) Y(x)
— (1 _ Eijg‘A(pE‘ ( Z zgkzk 1'18] )w

= (1 — AgF (—— 20,5 2% — k219, ) P(z (7.2.6)

1
= <1+1A<pk (2 Zk—l—ek”x )) x)

= (1+i4p"T%) () .

Here, we have defined the total angular momentum

1 1
Jh = ek”xlT 0 + 5 Xk (7.2.7)

With the inclusion of A, this operator reads:

J:xx?Vﬂ—l—gE, (7.2.7)
and is thus the sum of the orbital angular momentum L = x X p and the
spin 3 h 32,

The total angular momentum (= orbital angular momentum + spin) is
the generator of rotations: For a finite angle ¢* one obtains, by combining a
succession of infinitesimal rotations,
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W (z) =" P(a). (7.2.8)

The operator J¥ commutes with the Hamiltonian of the Dirac equation con-
taining a spherically symmetric potential @¢(x) = @(|x|)

[H,J']=0. (7.2.9)

A straightforward way to verify (7.2.9) is by an explicit calculation of the
commutator (see Problem 7.1). Here, we consider general consequences re-
sulting from the behavior, under rotation, of the structure of commutators of
the angular momentum with other operators; Eq. (7.2.9) results as a special
case. We consider an operator A, and let the result of its action on 7 be the

spinor s:
Atpr(z) = to(z) .
It follows that
eI AT (N (1)) = (€97 ()
or, alternatively,
e AT () = i (o)
Thus, in the rotated frame of reference the operator is
Al = i gemiet Tt (7.2.10)
Expanding this for infinitesimal rotations (©* — ApF) yields:
A=A —iAQMA TR (7.2.11)

The following special cases are of particular interest:

(i) A is a scalar (rotationally invariant) operator. Then, A’ = A and from
(7.2.11) it follows that

[A,J¥]=0. (7.2.12)

The Hamiltonian of a rotationally invariant system (including a spheri-
cally symmetric @(x) = &(|x|)) is a scalar; this leads to (7.2.9). Hence,
in spherically symmetric problems the angular momentum is conserved.

(ii) For the operator A we take the components of a three-vector v . As
a vector, v transforms according to v"* = v + €% Ayl v*. Equating
this, component by component, with (7.2.11), v* + €9* ApivF = o? +
%A(pj [Jj,vi] which shows that

[J8,v7] = ik e P (7.2.13)
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The commutation relation (7.2.13) implies, among other things,
[J%, J7] = ine'd* J* (7.2.14a)
[J%,L7] = ine"*LF . (7.2.14b)

k0
It is clear from the explicit representation X* = <00 gk) that the eigen-

values of the 4 x 4 matrices X* are doubly degenerate and take the values
+1. The angular momentum J is the sum of the orbital angular momentum
L and the intrinsic angular momentum or spin S, the components of which
have the eigenvalues j:%. Thus, particles that obey the Dirac equation have

spin S = 1/2. The operator (%2)2 = %hQ]I has the eigenvalue %. The
eigenvalues of L? and L3 are h?[(l + 1) and hm;, where [ = 0,1,2,... and
my takes the values —I, -1+ 1,...,l — 1,1. The eigenvalues of J? are thus
h%j(j + 1), where j =1 + % for [ #0 and j = % for I = 0. The eigenvalues
of J3 are hm;, where m; ranges in integer steps between —j and j. The op-
erators J2, L2, X2 and J? can be simultaneously diagonalized. The orbital
angular momentum operators L’ and the spin operators ¢ themselves fulfill

the angular momentum commutation relations.

Note: One is tempted to ask how it is that the Dirac Hamiltonian, a 4 X 4 matrix,
can be a scalar. In order to see this, one has to return to the transformation (6.2.6").
The transformed Hamiltonian including a central potential &(|x|)

(—iy" 3l +m + ed(|x']) = S(—iy" 0y +m + ed(|x[))S

has, under rotations, the same form in both systems. The property “scalar” means
invariance under rotations, but is not necessarily limited to one-component spher-
ically symmetric functions.

Problems

7.1 Show, by explicit calculation of the commutator, that the total angular mo-
mentum

J:xxp]l—l—gz

commutes with the Dirac Hamiltonian for a central potential

3
H=c <Z o"ph + ﬂmc) + e®(]x]) .

k=1



CHAPTER 4

Boson Wave Equations

The dynamical quantum-mechanical wave equations of spin-0 pions, spin-1
vector particles, and massless spin-1 photons are formulated in a consistent
one-particle fashion. For the spin-0 Klein—-Gordon equation, the interpreta-
tion of negative-energy states as describing antiparticles is stressed. The
relativistic bound-state Coulomb problem is then solved for z-mesic atoms.
The parallel is made between the massive spin-1 and photon wave equations.
The notion of currents, current conservation and gauge invariance for
photon amplitudes is discussed in detail and linked to the principle of mini-
mal replacement. Minimal coupling of photons to charged particles will be
the basis of the general electromagnetic interaction to be considered in later
chapters. Second-quantized field theories are briefly described, and an ana-
logy i1s made between (relativistic) photons and nonrelativistic phonons.

4.A Spin-0 Klein—Gordon Equation

Derivation. For a particle moving at relativistic velocities (i.e., having a
kinetic energy that is a substantial fraction of its rest mass), the nonrelati-
vistic approximation for energy, E = m + p*/2m, is no longer valid and one
must use instead the exact relation E = (p? + m?)t. The formal quantum-
mechanical replacement p — —iV would then result in the Hamiltonian

H=(=V?+m?)t (4.1)

48
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and a free particle Schrodinger-type equation
0 = (=V2+ m?)y. (4.2)

Since the square-root operation in (4.1) and (4.2) is difficult to interpret, it
would seem more reasonable to construct a relativistic wave equation asso-
ciated with the square of the Hamiltonian operator, (id,)*¢ = H?¢. Then
defining the D’Alembertian operator as

D Eﬁﬂa"=5tz—vz = —pz, (43)

where p, =id,, one is naturally led to the free-particle Klein-Gordon
equation

@O+ m*)p(x) =0,  (p* — m’)g(x) = 0. (44)

Such a particle is said to be “on its mass shell”, p? = m?.

Covariance. The manifest covariance of (4.4) for a quantum-mechanical
(Lorentz) scalar wave function, ¢'(x’) = ¢(x), ie., for

|¢'> = Uald>, (4.5a)
P'(x) = (x| =<x|Up|d> =<A7x[$> = (A" 'x),  (4.5b)

implies that
(0,0 + m*)d'(x') = (3,0" + m*)p(x) = 0. (4.6)
Due to these transformation properties, the wave function ¢(x) must
describe a spin-0 particle (e.g., a pion). Spin-0 solutions of the free-particle

Klein-Gordon equation (4.4) are proportional to the invariant plane-wave
functions

¢+(X) o« e—ip'x — eip -xe—iEl,
d_(x)ocer *=e P xEl 4.7)

These equations are special cases of the general solutions of the Klein-
Gordon wave equation containing a possible interaction term,

¢.(x)= ¢¢(x)9¢im- (4.8)

It is therefore clear that the use of the operator H? in forming a wave
equation leads to seemingly unphysical negative-energy solutions e* £ as
well as physical positive-energy solutions e~ ‘£ for the quantum mechanical
state of the particle. While this problem led to a temporary discarding of the
Klein-Gordon equation in the late 1920s and early 1930s, we have since
learned to live with it, as will be discussed shortly.

Probability Current. Another problem which arises with solutions of (4.4) is
the construction of a positive definite probability density. Paralleling postu-
late v in Section 1.A, one searches for a covariant probability current density
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j. = (p, j) which obeys a continuity equation
a“'u = aojo + alfx = atj() +V-j=0, (49)
where we have used (3.60), * = (J,, V). The obvious candidate for j, is the
hermitian form
Ju(x) = @*i0, ¢ = ¢p*id, ¢ — i(3,9*), (4.10)

because this current is conserved (0 - j = 0) for states ¢ and ¢* obeying the
Klein-Gordon equation (4.4):

8- j= i0"(§*0, ) — 0(¢0,%) = i¢*0 — ipOP* =0.  (4.11)

Furthermore, since the spatial part of (4.10), j, is identical in form to the
nonrelativistic current density (1.6) except for normalization, we are obliged
by covariance arguments to accept the timelike component of (4.10), p, as
the probability density. When combined with the general solutions (4.8), this
probability density becomes

pi(x)= % idod, =2E|¢d.(x)|> >0 (4.12a)
for positive-energy solutions, and
p_(x)= @*idop_ = —2E|$_(x)]* <0 (4.12b)

for negative-energy solutions, with E > 0. Clearly a negative probability
density is unacceptable; we shall contend with (4.12b) shortly.

Wave Packets. Construct general spin-0, free-particle wave packets in the
Hilbert space of positive and negative energy states as (normalized in a
box—see Section 1.B)

3

d . a .
¢+(x)=j2E5%ape iprx ¢_(x)=j2E[I;% b¥ P, (4.13)

where the complex conjugation of b, follows the usual convention. The
factor of 2E (E > 0) in (4.13) is a manifestation of our covariant normaliza-
tion of states. From (4.13) it is clear that the evolution of these packets does
not alter their positive- and negative-energy character. Consider then a
scalar product defined over the positive-energy states (4.13a) as (see Prob-
lem 4.1)

Py, P> = J'dsx ¢’:(x)i50¢+(x) (4.14a)
_[ TP .
= j Spy % (4.14b)
= [ @9 00 — mpoNiTa, ¥, (4140)

where 3(p* — m?)8(p,) in (4.14c) indicates that only positive-energy states
with p?> = m? are allowed. Note that this norm is time independent [differen-
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tiate (4.14a) with respect to time and use the Klein-Gordon equation; the
result is obvious for (4.14b) and (4.14c)]. Note too that the norm (4.14) is a

Lorentz invariant. Also, the covariant normalization of states, {p’|p)> =
2E3*(p’ — p), follows from (4.14b) with the replacement
a, V" - 2E3(p - p) (4.15)

for a plane wave of momentum p;.

Interpretation of Negative-Energy States. Historically, the resolution of the
negative-energy and negative-probability-density problems led to a reformu-
lation of the Klein-Gordon theory in a many-body context. It is possible,
however, to stay within a single-particle framework (Stiickelberg 1941;
Feynman 1949) by interpreting (4.12a) as the charge density of a positively
charged, positive-energy particle “propagating” forward in time (¢t > 0,
E > 0) via the plane-wave phase e ‘*". Similarly, one interprets (4.12b) as the
charge density of a positively charged, negative-energy state propagating
backward in time (t = —|t| < 0) via ¢ = ™Il Alternatively (4.12b) is
the charge density of a negatively charged, positive-energy particle propagat-
ing forward in time via the complex conjugate of the phase, e = (e~ "F')*,
For neutral particles which are their own antiparticles (ie., 7, = n", where ¢
refers to the “charge conjugate” antiparticle—see Section 6.A), one can
choose the wave function to be purely real or imaginary. In this case the
probability density (4.12) vanishes, consistent with treating p as a charge
density. Unfortunately, a thorough understanding of this interpretation
must await a discussion of charge conjugation in Chapter 6 and “backward
propagation in time” in Chapters 7 and 10.

The Stiickelberg-Feynman interpretation 1s i1deally suited for scattering
processes, where the particle is free and unlocalized before and after the
collision. For bound-state wave packets, however, a particle constrained to
Ax <m~ ! and Ap ~ 1/Ax ~ m demands a superposition of all Fourier com-
ponents, negative as well as positive energy:

Bp

#)= | 311

(aye™”* + bei? %), (4.16)

Then ¢*¢ contains interference terms e* 2£* which produce violent oscilla-

tions, referred to as “Zitterbewegung”. Since such “jittery-motion” plays a
more significant role for spin-} particles, we postpone a detailed discussion
of 1t until Chapter 5. Suffice it to say that as E — m, such interference be-
tween positive and negative energy components could have physical
consequences.

Feshbach—Villars Formulation. It is possible to circumvent these interference
terms by constructing a Klein-Gordon bound-state wave function which
has no negative-energy component in the nonrelativistic limit (Feshbach
and Villars 1958). For ¢ satisfying the Klein-Gordon equation with time
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derivative ¢, define
1 i 1 i,
== — =_1d——¢| 4.17
o-lovtop a=lfote)

Because ¢ = ¢, — e~ "™ as E - mimplies ¢ — ¢~ ™ and y — 0 by (4.17), ¢ is
called the “large” and y the “small” positive energy component of ¢. More-
over ¢ and y satisfy coupled first-order equations in time,

VZ V2

ip=—5_ (@ + x) + mo, ik=ﬂ(fp+x)—mx- (4.18)

These equations can be unified into one matrix equation satisfied by the
column vector

®= (;’: ) (4.19)
and resembling the Schrodinger form
i0,® = Hy®, (4.20)
where H, is the 2 x 2 matrix “hamiltonian”
Hy = B(1 + a)p?/2m + pm, (4.21)
with
B= (é _(1)), o= ((1) é) (4.22)

While the positive- and negative-energy states are coupled in this scheme,
the problems associated with negative energy are not completely eliminated,
because H, as given by (4.21) is not hermitian in that

Bl +a)= (_i _i)

This links the large and small components ¢ and x together, implying as in
(4.12) that the probability density p is not positive definite. If nothing else,
however, this approach indicates that a second-order equation in time can
be reduced to a first-order equation by doubling the Hilbert space of states
via the column vector (4.19). [From an historical standpoint, Dirac learned
this fact 30 years earlier when he discovered the first-order Dirac equation
for spin-§ particles (Dirac 1928).] Furthermore this formalism is ideally
suited for nonrelativistic reductions. We will exploit a similar pattern in the
case of the Dirac equation in Chapter 5.

External Fields. Next we consider the modification of the Klein-Gordon
equation for spin-0 particles in the presence of an electromagnetic field,
specified by the vector and scalar potentials A and A4, as the four-vector
A, = (Ao, A). Following the minimal substitution procedure of classical
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physics, we take
i0,=p,—p,— €A, (4.23)

where e is the electric charge of the particle, taken as positive unless other-
wise specified. The Klein-Gordon equation then becomes

[(0 — ed)? — m*]p(x) =0, (4.24a)
or
(O + mHe(x) = —J(x), (4.24b)
where J(x) is a scalar current “source” density
J(x) =2ied - 0 + iepd - A — €2 A9, (4.25)

or J = V¢, V being an effective potential operator acting on ¢.

This scalar current density should be contrasted with the vector current
density j,, altered from the form (4.10) by the minimal substitution law
(4.23):

julx) = 900, — eA)p = ip*5, b — 2edp*PA,. (4.26)

The doubling of the 4, term in (4.26) is a consequence of 4, being real.
Following the procedure (4.11), one can demonstrate that (4.26) is also
conserved, since in this case

0 j=ip*d — ip[ld* — 2edp*Ppd- A — 2eA - d(p*p) =0 (4.27)
by use of (4.24b) and (4.25).

Bound-State Coulomb Atom. Finally we consider the specific bound-state
Coulomb problem of a spin-0 ™ particle with charge — e bound to a heavy
nucleus with charge Ze (n-mesic atom). The static potential for this
configuration is (« = e?/4x)

ey = Vo=~ 5 (4.28)

Writing the positive-energy wave function as ¢(r, t) = ¢(r)e™ ", the spatial
part obeys a Klein-Gordon equation obtained from (4.24):
2
[(E + Z;z) + V2 mz} é(r) = 0. (4.29)
This latter equation is solved by the standard method of separation of

variables with ¢(r) = ¢(r)Y7(f) and V2 = r~*(3%/0r*)r — L*/r? leading to
the one-dimensional radial equation

2 _ 2
|:1d—r B I1+1) : (Zo) N 2ErZa:|¢(r) = —(E? — m)é(r).

r dr? r

(4.30a)
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In the limit E - m, E* — m* — 2mE, and Za < 1 (ie., for small-Z atoms,
Z < 137), (4.30a) becomes the usual nonrelativistic Schrodinger radial
equation

__r-.._

r dr? r? r

[1 2 I+ 1) N 2mZ<x} (1) = — 2mEngb(r). (4.30b)

We are familiar with the solutions of (4.30b) for integer values of n — [ = 1,

2, ..., corresponding to the Bohr energy levels forn=1,2, ...,
m(Za)*

Given (4.31), we can infer the Klein-Gordon energy levels by replacing
m— E, Exg = (E* — m?)/2E [by inspection of (4.30a)], and n — n’ [see Schiff
(1968)]:

E? — m? = —E¥Zua)*/n' (4.32a)
This relation can be solved explicitly for the relativistic energy as
Za)?]| "¢
E=m|t+ %) ] . (4.32b)
n

Here n' 1s a new relativistic principal quantum number with n’ — [ equal to
the usual nonrelativistic quantum-number difference n — I, assuming only

the integer values n' — I' = 1, 2, 3, ... ; and I’ is the effective relativistic orbital
angular momentum, inferred from (4.30a) to be
'+ )=+ 1)— (Za)* (4.33)
Solving (4.33) for I gives
= -3+ [(+3)?— (Zo)]e, (4.34a)

n=n—I+0=n—(1+3)+[(+13)? - (Za)*]} (4.34b)

where the positive sign of the square root has been chosen in order that /'
may be nonnegative as Za — 0, corresponding to bound radial solutions r*
regular at the origin. This form of n’, (4.34b), is to be applied to the energy
levels (4.32).

For Za < 1, both (4.32b) and (4.34) can be expanded in the form of (4.31)

with n=1, 2, ... (see problem 4.2),
(Za)* [ 1 3
-1l 4.35
+ n I+1 4n ( )

m(Za)?
2n?
This removes the ! degeneracy of E in the O(a*) relativistic fine-structure
term. For large Z, (4.34) provides the constraint that for I and n’ real, the
discriminant of the square root must be positive (of course, it cannot vanish)
and for s-waves (I = 0) this means that

E_'m_—_ENR:_

Z<—=—. (4.36)
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If instead Z > 1/2a, the centrifugal barrier term in (4.30) becomes attrac-
tive for s-waves and the energy becomes imaginary, so that the wave func-
tion has a damped exponential part and the particle orbits become unstable.
The situation is similar to the classical relativistic situation for the Coloumb
potential; for I? < (Za)? the centrifugal barrier also becomes attractive and
the particle spirals in to the origin. Multiparticle quantum states then
presumably play a role, with short-distance corrections such as vacuum
polarization by pair creation (see Chapter 15) modifying the single-particle
wave function. In the next chapter we shall again return to this strong-field
limit for the case of bound electrons.

4.B Spin-1 Wave Equation

Derivation. Starting with a three-component wave function ¢; describing a
massive spin-1 free particle in its rest frame, two possible rest-frame covar-
iant forms exist: a covariant four-vector ¢, = (0, ¢;) and a rank-two
antisymmetric (field) tensor ¢,, given by (recall the angular-momentum
tensor operators L,, and J, in Chapter 3) ¢¢ = —¢,, =0,¢;, and
$oo = ¢;; = 0. In a general frame, the boosted form of ¢,, can be obtained
from ¢, as

b = 0,0, — 0,0, (4.37)

The free-particle dynamical relation between ¢, and ¢,,, is called the Proca
equation:

&P, = me,. (4.38)

Owing to the antisymmetric structure of ¢
the subsidiary condition

the derivative of (4.38) implies

uv?

d¢, = 0. (4.39)

Since ¢, must transform according to the (3, 1) representation of £, we
know that (4.39) is required to rule out the spin-0 component in ¢, (see
Section 3.B). This in turn provides a group-theoretical justification for the
dynamical equation (4.38). Moreover, using (4.37) to eliminate ¢, in (4.38)
and applying (4.39), we are led to a Klein-Gordon equation for the vector
wave function,

(O + m*),(x) =0, (4.40)

which, as in the spin-0 case, guarantees the correct dynamical relation be-
tween energy and momentum for a free particle.

Current Densities. Given the wave functions ¢,, and ¢, it is possible to
construct a conserved, hermitian current density analogous to (4.10) but
describing spin-1 probabilities:

ju(x) = i(¢.uv ¢v* - :v ¢V) (4'41)
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The field equation (4.38) along with (4.37) then manifests J - j = 0. As was
the case for the spin-0 probability density, j, = p obtained from (4.41) is not
a positive definite quantity. Likewise, negative energy and Zitterbewegung
problems again arise, to be handled in a manner similar to spin-0 particles.
We therefore proceed to indicate the new aspects associated with spin-1
wave functions.

In the presence of an electromagnetic field, the minimal replacement (4.23)
converts the field equation (4.38) from the spin-1 free-particle Klein-Gordon
equation {4.40) to a similar equation containing a vector source current (see
Problem 4.3),

(O + mH)d,(x) = J (x). (4.42)
The actual structure of J, is not revealing, but if the subsidiary condition
(4.39) is satisfied, then. this source current is conserved. Consider too the
modification of the spin one probability current density (4.41) in the
presence of external electromagnetic fields. It is a straightforward task to
show that the minimal replacement i0, — id, — eA, converts (4.41) to

ju(x) =@*id,g.5 + igﬂgm — i(—')'ag#,,
- e(ZApgaﬂ - Aﬂgua - Aaguﬂ)]d)ﬂ‘ (443)

It can be demonstrated that this current is conserved (6 - j = 0) in much the
same manner as for the spin-0 case {see Problem 4.4). It turns out, however,
that unlike the spin-0 and spin-} currents (the latter to be discussed in
Chapter 5), the minimal spin-1 current is not unique (Lee 1965).

Free Particle Solutions. Finally we display the covariantly normalized free-
particle, plane-wave solution of (4.40),

¢.(x) = e.(p)e™ """, (4.44)
with the polarization vector further specified by the helicity eigenvalues,
¢(p) and 4 = +1, 0. The subsidiary condition 0 - ¢ = 0 is therefore equiv-
alent to p - ¢ = 0, as derived earlier in (3.102). As in the spin-0 case, a factor
of 2E)™ ¥ in (4.44) has been absorbed into the covariant normalization of the

states, and a one-particle volume normalization factor of V™% has been set
equal to unity. The orthogonality of the wave functions (4.44) then demands

(P (p) = — 6, (4.45)

a result which can be verified from the specific forms (3.98) and (3.101).
Likewise, in the rest frame of the particle, the completeness property of the
polarization vectors implies

3
; 5%”([")5,(1‘“*@) = d;j, (4.46a)

and since ¢;; can be expressed in four-dimensional language as
—(9,, — m,m, /m?), the boosted form of (4.46a) is

iEL“(p)si“*(p) = - (gw _P “’j“). (4.46b)

1 m
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The p-meson (m, =~ 776 MeV) and the w-meson (m, ~ 783 MeV) are
examples of spin-1 particles occurring in nature. They are significantly heav-
ier than the spin-0 z-meson (m, ~ 140 MeV).

4.C Spin-1 Maxwell Equation

A massless spin-1 photon obeys a quantum-mechanical wave equation
somewhat similar in structure to the massive one, with ¢, and ¢, respec-
tively replaced by the four-vector potential 4, and the antisymmetric field

tensor F,,, where

F,=0d,A,—0,A,. (4.47)
The Maxwell free-field equation is then [setting m = 0 in (4.38)]
—0'F,,=0A4,—-0,0 - A)=0. (4.48)

We take this as the dynamical wave equation for noninteracting photons.

Existence of Gauges. Note now that a subsidiary condition ¢ - 4 =0 is no
longer a direct consequence of the field equation itself, as was (4.39). Rather,
an ambiguity now exists, and the value of 0 - A is correlated with the way we
restrict the number of spin states of the photon to two, as required by the
helicity constraint 4 = +1.

For plane waves, the representation for 4, satisfying (4.48) for a noninter-
acting photon with k2 = w? — k% = 0 has the general form

A (x) = ¢, (k)e ™~ (4.49)

In Section 3.D we chose the “transverse gauge” for ¢(* (k) in order to insure
only two independent components in ¢,:

dEVK) =0, k-&*Vk)=0. (4.50)

But we cannot separately choose both conditions (4.50) in a frame-
independent manner. A Lorentz-invariant choice is the combination
k - g(k) = 0, and (4.49) then corresponds to the Lorentz gauge for (4.48):

8-4=0, [A4,=0. (4.51)

While (4.51) is not the only gauge decomposition of (4.48), it is the natural
choice for free photons, paralleling massive spin-1 particles. The transverse
or radiation gauge is @ - A = 0. In any case, the orthogonality and com-
pleteness relations for photon polarization vectors are analogous to (4.45)
and (4.46):

e*@(K) - eP(k) = — 8,5, (4.52)
valid in any gauge, while
Y eMK)EP*(K) = 5, — kik; (4.53)
A=*1

is valid only in the transverse gauge (4.50).
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Gauge Invariance. It is possible to transform A4, to a different gauge so that
(4.50) and (4.51) no longer hold but (4.48) remains an identity. This is
achieved by a gauge transformation

A,—> A, +9,¢8x), e,—e,+ Ck, (4.54)

with #(x) an arbitrary scalar function becoming ie™* * for a plane wave;
thus 0 - A and k - ¢ are transformed to

9 A- J&(x), k-e—0. (4.55)

Consequently, while k - ¢ must always vanish for k2 = 0,0 - A vanishes only
in the Lorentz gauge (4.51). The connection between the minimal coupling
replacement id, — id, — eA, and the gauge transformation (4.54) is the prin-
ciple of “gauge invariance of the second kind”. This is the coordinate-
dependent phase transformation of a charged-particle wave function,

P(x) > e X e(x), (4.56a)

‘where £(x) generates the gauge transformation (4.54), under which the can-
onical momentum transforms simply:

(i0, — eA,)p(x) = e™**Nid, — eA,)p(x). (4.56b)

Observables such as the current densities (4.26) and (4.43) are built up
from bilinear products as ¢*¢ and ¢*(id, — eA,)¢, manifestly invariant
under the phase transformations (4.56); thus current conservation is na-
turally extended by this principle to include interactions in the presence of
electromagnetic fields. From our viewpoint this is further justification for
considering minimal replacement as a fundamental principle which gener-
ates the only interaction between charged particles and photons. In the
context of lagrangian field theory, the principle of gauge invariance of the
second kind [the first kind corresponding to a constant phase in (4.56) and
linked to charge conservation] plays the central role and is sometimes con-
sidered the raison d’etre for the existence of A, itself and its interaction with
charged matter. Gauge principles recently have been used to generate other
fundamental interactions (strong and weak), but such topics are beyond the
scope of this book.

One final fact about gauge invariance of significant import for us later will
be the manner in which the two physical spin states of the photon are
realized for a general interaction with matter. This is most conveniently
stated by the Lorentz-invariant S-matrix element, itself expressed in terms of
the M-function of (3.87). Accordingly, we may write

SP(k) = e (k)M*(k), (4.57)

where S™(k) and the polarization vector ¢{’(k) represent a photon of
momentum k and helicity 4. While M, transforms like a simple four-vector
under ¥, we recall that ¢, has a slightly modified transformation law
(3.109) because a photon really behaves like an E(2) [and not an O(3)] object
under a little-group transformation. Applying (3.109) to (4.57) and using
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A,* = (A1), then leads to (see Problem 4.5)

S(A)(k) — eil@ [A,,v _ on %] 8(vul)(A— lk)M“(k)

= % [g;,“(/\- K)MHAT'K) — Ag"e (AT IK) 'Z; M*(k)| .

(4.58)

Aside from an overall phase factor (of no consequence for physical probabi-

lities), the Lorentz-invariant S-matrix transforms as a simple scalar (Wein-
berg 1964c)

SW(K) = e49SP(A™ k). (4.59)

Then comparing (4.59) with (4.57) and (4.58), we see that M, must satisfy an
additional constraint,

k"M (k) = 0. (4.60)

This condition is sometimes referred to as “on-shell” gauge invariance (on-
shell refers to physical, as opposed to virtual or off-shell, energy or
momentum—more about this later). It guarantees that ¢* " transforms
properly under little group transformations. The reference to gauge invar-
iance means that (4.57) is invariant under the gauge transformation
g, €, + Ek”, e*M—-e-M+EZk-M=c¢- M by (4.60). We will take note
of this fact many times in our later work.

Charged-Matter Currents. The probability current density j, for charged
particles plays a dual role in that ej, is the charged source current density for
the electromagnetic field. That is, the modification of the Maxwell field
equation (4.48) in the presence of charged matter has the classical form

OF plx) = —€j,(x). (461a)

or in terms of the dynamical (Klein—-Gordon-type) equation for A, in the
Lorentz gauge (0 - A =0),

OA,(x) = ej,(x) = 5™(x) (4.61b)

Note that the sign of the spin-1 source current in (4.61b) is opposite to that
of the spin-0 source current in (4.24b). As a consequence we shall show later
that this sign change is linked to a fundamentally attractive spin-0 force (e.g.,
the pion-exchange strong force) and a fundamentally repulsive spin-1 force
(e.g., the photon-exchange electromagnetic force between particles of like
charge).

It is clear from the divergenceless nature of the left-hand side of (4.61) that
this charged-matter current must be conserved: 0 - j(x) = 0. As noted after
(4.56), this result is also a consequence of the quantum-mechanical structure
of the probability current density, as given for charged spinless particles in
(4.26), coupled with the principle of gauge invariance of the second kind as
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applied to such particles via (4.56). The connection between current conser-
vation and gauge invariance takes on further significance when formulated
in momentum space. For a free, spinless, charged particle absorbing the
four-momentum g = p’ — p from a photon, the current density constructed
from positive-energy packets (4.13a) becomes, via (4.15),

Jl(x) = % (x)id, ¢ (x)
-

x| pye - p' |t pye

2E’
(4.62)

and the differential operator id, in (4.62) requires the off-diagonal
momentum-space current to be

ikl = +p), (4.63a)

for a free photon, g = (p' — p)? = 0. On the other hand, in the presence of
an external electromagnetic field, ¢> = (p' — p)* # 0; and on grounds of
Lorentz covariance and current conservation, the off-diagonal momentum-
space electromagnetic current must have the form

(W | |p> = eF(g*)(p' + p),. (463b)

Here the charged particle is still considered as free, as in initial- and final-
state scattering conﬁguratlons Since 0 - j oc ¢*{p’|j,|P), current conserva-
tion implies, for p'2 = p? = m?,

Vi1 = Fl@*)p' — p)- (" + p)
= F(g*)(m* — m*) =0, (4.64)

which demonstrates the absence of the only other possible covariant in
(4.63b), q, = (p — p),. The dimensionless Lorentz-invariant function F(q?)
is called a form factor. It represents all possible interactions between the
charged particle and photons, altered only by “strongly interacting” par-
ticles also interacting with the spinless particle in question. At ¢*> = 0, (4.63a)
demands that F(0) = 1, regardless of the type of interacting particles present.

The conversion of the free-particle current [(4.10) in coordinate space or
(4.63a) in momentum space] to the interacting forms (4.26) or (4.63b) for
q* + 0 is a complicated dynamical process which we shall attempt to explain
in the latter half of this book. At the present level of discussion the inter-
esting connection is between the dynamical current-conservation statement
(4.64) and the kinematical on-shell gauge-invariance constraint (4.60). For a
free photon with momentum k and k* = 0, (4.64) is a special case of (4.60)
(with q replaced by k). An analogous situation exists for spin-1 matter cur-
rents based upon (4.43) and also spin-} matter currents to be described in the
next chapter.
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4.D Second Quantization: Photons and Phonons

Thus far we have treated a photon as a “particle” having a quantum-
mechanical wave function obeying the dynamical wave equation (4.48) for a
free photon and (4.61) for a photon interacting with charged matter.
Needless to say, these quantum field equations are identical in form to
Maxwell’s equations for the classical electromagnetic field tensor, related to
physical electric and magnetic fields as

—E;=Fy = atAi - aiAO’ (4.65a)
B;= —%Siijjk = SijkajAk' (4.65b)

This complementarity relation between a quantum particle and a classical
wave or field can be extended one step further, to a quantum field, then
referred to as second quantization.

Noninteracting Photons. In such a quantum field theory, the vector potential
of the radiation field is scaled to the space-time-averaged energy flux
(Poynting vector), which in rationalized units (restoring # and ¢ here) is

(Sy=cKExBy=Y 2—‘(‘:’% |A, |k, (4.66)
k

where A, is the Fourier component of the vector potential

Ar, t) =3 (Age™ Tem ™ + Afe™ % Teler), (4.67)
k

[Note that we have anticipated that A will be treated as an operator and
have used A' instead of A* in (4.67).] If (4.66) is to represent a flux of
photons of density N/V with energy Aw and angular momentum #, then
(8> = hawcN/V implies

hc?N,

20V

| A2 = (4.68)
In a second-quantized theory, (4.68) is interpreted as a matrix element
(Ny|A{ - A | N> in a particle number “Fock space”, with (restoring the
polarization vector but suppressing its helicity components)

A= 7 ae) (4.69)
, 20V %
and
(Ny|afa,| N> = N (4.70)

We see that the second-quantized field operator A, has the same structure as
the single-photon wave function (4.49), now noncovariantly normalized,
except for the second-quantized operator a,, where a] g, is a number opera-
tor according to (4.70).
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To proceed more rigorously, one treats (4.67) as a normal-mode
harmonic-oscillator expansion and expresses the field energy as

E= ; j Bx (B2 + B2 = ¥ ho(N, +3), (4.71)
k

where use of (4.65), (4.67), and (4.69) leads to (4.71) with the identification
(now being careful to respect the order of the operators A and A')

(Ny|a}a, + ayal| N> = 2N, + 1. (4.72)

Then abstracting (4.71) to a hamiltonian operator expressed in terms of
canonical coordinates and momenta, the commutation relation [x,, p,] = ih
leads to the second-quantized commutation relations (see Problem 4.6)

[ak’ all] = 5I.c,k" [ak’ ak'] = 0. (473)

It is therefore clear from (4.72) and (4.73) that g, is an annihilation operator
and a] a creation operator in Fock space satisfying

(N — 1]a | N = {Ny|al| N, — 1> = /N, (4.74)

and consistent with af g, being the number operator as expected in (4.70).

Spin and Statistics. Second quantization is a natural way to build in the Bose
statistics of the photon field from the outset via the commutation relations
(4.73). Likewise the Bose statistics of spin-0 or spin-1 massive particles can
be built in by commutation relations such as (4.73) to form a similar free
quantum field theory. A field theory of fermions also can be constructed in
this way, with the commutation relations (4.73) replaced by anticommuta-
tion relations in order to manifest the Fermi statistics. This connection
between spin and statistics follows in a natural way from the requirement of
positive definiteness for the free-field hamiltonian (Pauli 1940). Interacting
quantum fields are described in terms of coordinate-space lagrangian densi-
ties. While the methods of quantum field theory are elegant and powerful, we
shall follow the simpler and intuitive (one-particle) methods of Feyman for
the greater part of this book. This means we will be investigating the struc-
ture of (one-particle) current and hamiltonian densities (usually in momen-
tum space) rather than lagrangian densities {in coordinate space). The
connection between spin and statistics will be invoked as a postulate, as
elsewhere in quantum mechanics (postulate vi, Section 1.A}); no reference
will be made to the second-quantized commutation relations (4.73).

Phonons. Before leaving this subject, it will prove useful to consider a non-
relativistic quantum field construct, that of phonons, corresponding to boson
quanta but associated with lattice vibrations in a solid. Like photons,
phonons have no mass—but this is not dynamically relevant. Instead the
relation between phonon energy (frequency) and momentum (wave number)
depends upon a “dispersion law” resulting in @, & constant at small q for
“optical phonons” and w, = ¢,|q] at small |q| for “acoustical phonons”,
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where ¢, is the velocity of sound in a solid, ¢, ~ 10°> cm/sec. Since phonons
are induced by displacements of lattice-site ions, they can be associated with
a vector “spin”, having longitudinal as well as transverse components. The
scale of the phonon displacement amplitude A with Fourier coefficients A,
and expansion (4.67) is set by the time-averaged displacement energy of a
spring with spring constant k = Mw?, where M is the lattice ion mass,

(E) =2 x sMw}|A > (4.75)

Since this classical energy represents only half the energy of the spring (the
kinetic energy accounts for the other half, by the virial theorem), the quan-
tum analog of (4.75) is $hw, N, for N, phonons of angular frequency w,,
giving

AN

|Agl2 = 5t (4.76)

Maw,
Paralleling the photon case (4.68) and (4.69), it would appear that the
second-quantized phonon displacement field operator is

| h
Aq = EM’(D—q aqa(q), (477)

with a, and a] satisfying the commutation relations (4.73) and a} a, is the
number operator similar to (4.70). In Chapter 9 we shall employ the one-
particle phonon wave function (noncovariantly normalized)

h ) .
Al ) = 57 Bk e (4.78)
q

where the ion mass M in (4.77) is expressed as pV in (4.78) so that the
amplitude displays the usual one-particle box normalization. The ion den-
sity p varies from 2 to 20 g/cm? in a solid, a typical value being 5 g/cm?>.

General references for boson wave equations are Hamilton (1959), Roman
(1960), Schweber (1961), Bjorken and Drell (1964), Bethe and Jackiw (1968),
Schiff (1968), Baym (1969), and Berestetskii et al. (1971).




CHAPTER 5

Spin-] Dirac Equation

What the Schrodinger equation is to nonrelativistic physics, the Dirac equa-
tion is to relativistic physics. We begin this chapter by describing three
alternative ways of deriving this spin-4 wave equation—the more the
merrier, in order to develop as much intuition as possible about this fun-
damental dynamical tool. Next we formulate the Dirac equation in a man-
ifest covariant manner and emphasize the structure of y-matrix algebra and
the positive and negative free-particle solutions. The Dirac equation in the
presence of external fields is then generated by minimal replacement, and the
resulting electron bound-state energies are obtained for the one-particle
Coulomb atom and for a constant external magnetic field. We pay particular
attention to the difference between the Dirac atom and the fine-structure
level shifts in the Schrodinger atom. Finally, we develop free-particle Dirac
equations for spin-4 massless neutrinos and spin-3 massive particles.

5.A Derivations of the Dirac Equation

The Dirac equation plays a fundamental role in any relativistic quantum
theory, not only because it circumvents many of the problems arising from
an unphysical interpretation of the Klein-Gordon equation, but also be-
cause it naturally describes the basic spin-} constituents of matter at the
atomic and nuclear level—electrons and nucleons (protons and neutrons).
To appreciate the significance and beauty of the Dirac equation, it is well to
describe three alternative derivations: the original relativistic approach of

64
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Dirac, the ad hoc but elegant derivation via a Pauli spin-matrix replacement,
and finally the group-theoretic derivation.

Dirac’s Derivation. In order to obtain a positive definite probability density
for spin-} particles, Dirac searched for a relativistic differential equation
which was first order in time (Dirac 1928, 1958). To this end he interpreted
the Schrodinger equation, (id, — Ho )Y = 0, as generated for spin-} particles
by a free-particle matrix hamiltonian H, first order in momentum for relati-
vistic considerations:

Hy=a p+ pm (5.1)

Here o; (i = 1, 2, 3) and B are four matrices to be determined, and p is the
usual quantum-mechanical momentum operator —iV for a particle of mass
m. Since the single-component spin-0 Klein—-Gordon equation leads to a
two-component first order matrix (Feshbach-Villars) equation (4.20), it is
natural to suppose that a two-component spin-} equation, second order in
time, should be linked to a four-component matrix equation, first order in
time. Such a “guess” was all the more impressive at the time because Dirac
did not have the hindsight of the Feshbach—Villars equation. Thus one
assumes that o; and § are 4 x 4 matrices and that the Dirac wave function
¥ — ¥, is a four-component (Dirac) bispinor. The second-order equation in
time for a free particle must, of course, be of the Klein—-Gordon form, which
in momentum space is obtained from the first-order equation via multi-
plication by E + H:

(E—Ho) =0- (E? — H2}y = 0. (5.2)

Dirac then demanded that the square of the 4 x 4 matrix hamiltonian (5.1)
be constrained to E? = p* + m* by (5.2), i,

H3 = 3(oyo; + o;04)p; p; + (Bt + o B)p; + p*m* =p* + m*.  (5.3)
This leads to the defining properties of the matrices «; and §:
{ai, a_,} = 26“, {ﬁ, a,-} = O, a,-z - ﬁZ = 1. (5.4)

Furthermore, since H, must be an observable hermitian operator, so must o;
and § be hermitian:

of =0z, B'=4 (5.5)

The adjoint row bispinor ' can be combined with the column bispinor ¥ to
form a positive definite probability density

p=uy= Y V.. (56)

now naturally linked with the hermitian probability current density

i=ylay. (5.7)
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A justification for the form (5.7) is the resulting continuity equation
0.p + V- j =0, which follows from (5.6), (5.7), and the Dirac equation

(i6, — Hoy = 0, (5.8)
where H, obeys (5.1) and (5.3) (see Problem 5.1).
From the properties (5.4), it is clear that o; = —fa; f and f = —a, fy,
which means that these matrices are traceless (Tr B =Y +_; B,,):
Tra;=Tr §=0, (59)

since Tr BA = Tr AB. It 1s then useful to describe o; and f by a specific
representation, such as the Dirac-Pauli representation,

N IR

[which, of course, satisfies the general properties (5.4}, (5.5), and (5.9)], where
the elements, ¢ and 1, are themselves the 2 x 2 Pauli and identity matrices,
obeying

0:6; = 01 + ig; 04 (5.11)

Dirac used this representation (5.10) to obtain the first (but by no means the
last) profound prediction of the Dirac equation. Making a two-component
reduction of (5.8) in the presence of an electromagnetic field via the Dirac-
Pauli representation (5.10), he discovered that the electron must have the
unique magnetic (dipole) moment

e c e

Me=2 X5 X5 =50, (5.12)

ie., the Landé g-factor is g, = 2, a result in almost perfect agreement with
experiment and assumed ad hoc up to that time. We shall return to Dirac’s
method of predicting g, = 2 in Section 5.D and to the small but important
corrections to this result in Chapter 15.

Derivation via Pauli-Spin-Matrix Replacement. This leads naturally to the
second derivation of the Dirac equation with g, = 2 as input [see, e.g., van
der Waerden (1932), Sakurai (1967)]. Recall from (5.11) that the square of
any vector such as p” is equivalent to the Pauli-spin-matrix replacement
(o - p)*. The question then arises as to when this substitution is required, i.e.,
for all or only a few problems involving spin-4 particles. Furthermore, while
(o - p)> = p?, it is clear that in the presence of an electromagnetic field, the
minimal replacement p - 1 = p — eA means (¢ * ©)*> # n?, but instead (5.11)
implies, along with p x A= —iV x A — A x p, that

(6 n)?—n*=ic-nxn=—eo-B. (5.13)

Need nonrelativistic or relativistic momentum operators be subject to this
Pauli-spinor replacement? Consider first a nonrelativistic free-part:cle ham-
iltonian with p?/2m — (¢ - p)*/2m. In the presence of an electromagnetic
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field, (5.13) then leads to the Pauli hamiltonian

1
H=:21;1(c-p)2—>2mn2—§%c-B. (5.14)
The spin-dependent term in (5.14) has the form —p - B, with p = gugJ
where J = 6/2 and g = 2, a very desirable result.
Given this success as input, we are encouraged to apply this mnemonic to
all problems involving p? and spin 1. In particular we modify the spin-1
Klein-Gordon equation to

[E? - (o - p)*]p = m2o, (5.15a)
which then has the time-dependent factored form
(i0, — & - p)id, + 6 - P)p = m*¢. (5.15b)

Now we parallel the discussion of the Feshbach-Villars version of the
Klein-Gordon equation (Section 4.A) by defining

1

m (i0, + 6 - p)P (5.16)

QL= ¢, Pr =

and expressing the second-order equation (5.15) as two coupled first-order
equations,

(i, + 6 - p)p, = Mg, (i6, — 6 - p)pr = mo,. (5.17)
Further defining
@ =@r+t @, X=Qr — Py, (5-18)

and using the Dirac-Pauli representation (5.10), the first-order equations
(5.17) for these two-component spinors can be put into the four-component
Dirac-equation form (id, — Ho) = 0, with ¥ = (¢) and

m o-'p
c'p —m
again the Dirac free-particle hamiltonian. Setting p = 0 in (5.17) means that
¢.(0) = px(0) and x(0) = O for positive-energy states ¢, g oc e ¥, whereas
¢.(0) = — ¢g(0) and ¢(0) = O for negative-energy states ¢, g oc . In four-

component language with ¥, oc e, these p = 0 constraints can be ex-
pressed as

H0=( )=a-p+ﬂm, (5.19)

B (0) = £¢.(0), (5.20)

stating that the Dirac-Pauli representation diagonalizes the bispinor energy
states in the extreme nonrelativistic limit.
Alternatively we may use another representation for o; and S, called the

Weyl representation
- O 0 1
= — 5-2 1
o ( 0 o ) B ( | o ) (5.21)
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also satisfying the defining relations (5.4), (5.5), and (5.9). Given (5.21), the
two-component equations (5.17) again can be combined into the four-
component Dirac form (5.8) provided that

_[Pc

v (‘PR)

in this representation (Problem 5.1). In Section 5.E we shall show that for
m =0, (5.17) indicates that ¢y is polarized right-handed, corresponding to
helicity 4 = +3, and ¢, is polarized left-handed, with 1 = —3 [see also

(3.94)]- Thus we see that the Weyl representation diagonalizes bispinor heli-
city states in the extreme relativistic (m = 0) limit.

Group-Theory Derivation. The third derivation of the Dirac equation com-
bines the Weyl representation for «; and f# with the group-theoretical formu-
lation of relativistic spin-3 states in Section 3.B. The motivation is to
combine the (3, 0) and (0, ) irreducible representations of the homogeneous
Lorentz group into a larger matrix (3, 0) + {0, 3) representation 2, which is
then equivalent to the adjoint representation 2(A) = f2'(A~1)B. Not by
accident, this § corresponds to the Dirac § in the Weyl representation (5.21).
For the two-component (3, 0) boost D(L,) and the (0, 3) boost D(L,), the
corresponding wave functions ¢z and @, satisfy the uncoupled equations

oL(p) = D(Lp)(PL(O)

= [2m(E + m)] " *(E + m — o - p)p.(0), (5.22a)
or(p) = D(Lp)¢R(O)
=[2mE+m)] HE+m+o- p)oz(0), (5.22b)

from which one can derive the coupled relations (5.17) (see Problem 5.1).
Now use (5.22) along with the matrix boost obtained from (3.51) in the Weyl
representation as

_(P) 0 m m)] "¢ m :
2t = (P07 ) = EnlE 4 mIE + )+ ) .

where 1 denotes the 4 x 4 unit matrix (sometimes deleted). Again expressing
the Dirac bispinor in the Weyl representation as § = (), (5.22) and (5.23)
boost (0) from rest to

w(p) = 2(L W(0). (5:24)

Finally, to recover the Dirac equation, operate on (5.24) with id, — H,,
obtaining

(0, — HoWs(P)oc [£E— (& - p + Pm))[ L E + & - p + m]y. (0)
= (E? — p* — m®)y,(0)

+m(+E+m—a-p)lF B:(0)
(5.25)
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The first term on the right-hand side of (5.25) vanishes by the energy-
momentum relation, and the second term is zero by (5.20). Thus the Dirac
equation (id, — Hoj = 0 is equivalent to the Klein—-Gordon constraint plus
(5.20), which projects out the positive- or negative-energy parts of . Put
another way, the Dirac equation is the boosted form of the rest-frame energy-
eigenvalue relation (5.20) subject to the energy-momentum (mass-shell)
constraint E2 — p> = m? for p in an arbitrary direction.

In Chapter 6 we shall learn that (5.20) has invariant meaning as the
spatial-inversion (parity) eigenvalue relation. Combining two-component
spinors which transform into one another under spatial inversion as in (5.23)
means that 2 is again equivalent to the parity transform via (3.47),
B2 (L,)B = 2(L_,). This is sometimes considered the main motivation for
the four-component Dirac formalism. Another is the fermion mass; if it is
zero then the two-component equations (5.17) suffice.

5.B Covariant Formulation

Covariant y-Matrices. It is possible to formulate this relativistic four-
component formalism in manifestly covariant language by expressing the
Dirac matrices ff and & in terms of covariant y-matrices y, = (y,, 7), defined
as

=p y=po (5.26)
These matrices have the “lengths” (y? = y3 = y3 = 73)
w=-v=L pY=yy=4 (5.27)
and satisfy fundamental anticommutation relations following from (5.4):
i WY = 290 + 209 = 29,0 (5.28)

Note that (5.28) has the form of a covariant symmetric tensor equation; this
implication will be discussed shortly. Next combine the hermitian and
antihermitian relations y§ = 7, and y! = —y; into a “Dirac adjoint” matrix
operation

Py = Yo PhVo = Voo (5.29)

where in general the Dirac adjoint (barred operation) of any 4 x 4 matrix is
A = yg Ay, with AB = BA. That is, (5.29) implies that y, is “self-barred”.
Then define the new y-matrices

Ys = Yo¥1Y273 (5-30a)
satisfying

Ps=7ps.  ¥5=—L  ysv,= —V.s (5.30b)

duv = %l[‘)}u’ ‘Yv] = l())u'))v - guv) = _dvu (5318')
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satisfying 6,, = 0,,,, since i = —i and
O'ij=8ijk0'k, Gi =—%£ijkajk’ (5.31b)
Oo; = iyoy; = ia; = — 750, (531c)

where ¢, are now 4 x 4 matrices, built up from the 2 x 2 Pauli matrices as
(° &)- In the latter case, a = iyso follows from oy = iy 7172737273 = Yo 7V1s
etc.

Since 4 x 4 matrices have 16 possible elements, there must be 16 indepen-
dent y-matrices. We may choose these independent matrices as the self-
barred set

Ty = L s Gns a7 = S(1), V(4), T(6), A@), P(1).  (5.32)

where 1 is the one scalar (S) unit matrix, y, are the four vector (V) matrices,
o, the six antisymmetric tensor (T) matrices, iy, s the four axial-vector (A)
matrices, and y5 the one pseudoscalar (P) matrix, so that in all there are
1+4+6+4+ 1= 16 independent matrices. The transformation laws for
the various I'; verify their independence; this will be demonstrated later
along with the implications of the “pseudo” property of A and P. Note the
explicit factor of i in iy, ys. It preserves the relation that ail 16 T'; are self-
barred, ie., iy, ys =757, i= —iysy, =iy, vs. Thus I, =T, Beware,
however, of the other possible (non-self-barred) choices for y5 appearing in
the literature, +iy,y,y,71. Finally, any general 4 x 4 matrix can be ex-

panded in terms of these 16 I';. In particular, one can verify that (see Prob-
lem 5.2)

PuPs = Guv = 0, (5.33a)

V50 = 3€uap 0™, (5.33b)

TuPs¥o = Guv¥o = Guo¥y + GupVu = Euvos ¥ Vs (5.33¢)

Euvps VYV = =31 7,755 (5.33d)
Euvpa V7YY = —4! ys, (5.33¢)

’))u’yv ))p Ye = guv '))p'ya - gup Yv Ve + gvp yu)’a + gpo ))u v — Gve )’u ),p
+ Gue VvV — Guvboo + GupGvs — GuaBuo T VsEuvoer  (5.33f)

etc., where the y-matrix products on the left-hand sides have been expressed
as linear combinations of the 16 T'; on the right-hand sides of (5.33), and we
have used the fundamental properties of the Levi-Civita pseudotensor

(80123 = 1),

Euvps €7F7 = — 41, (5.34a)

Euvpoba?’ = —3! G (5.34b)
g g

€uvpabag’® = =211 7% T (5.34c

uvpo “aff 9 Gup )

etc.
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As regards the matrices § and a, the y-matrices satisfying only (5.27) and
(5.28) then have many possible representations. The representation-
independence (Pauli-Good) theorem states that all representations of -
matrices are equivalent up to a similarity transformation, y, = S~ 'y, S. The
Dirac—-Pauli representation, diagonalizing energy via j, in the extreme non-

relativistic limit, is
(! 0 . (01
Yo = 0 _1 ’ 1)’5 - 1 O s

_Oc 0__60
T 1.6 of 0 ef

whereas the Weyl representation, diagonalizing helicity via 75 in the extreme
relativistic limit, is
_ 0 1 (-1 0
Yo = 1 o) Iys = o 1P

1=(_e o} =5 o)

Other representations, including the Majorana and the light-plane represen-
tation, are worked out in Problem 5.3.

(5.35)

(5.36)

Covariant Transformation Laws. To put the Dirac equation (id, — Hy)y = 0
on a covariant footing so as not to single out time via d,, multiply the
equation on the left by y,—obtaining (iyod, —y - p — mpy = 0—and use
p = —iV. This results in the covariant form of the Dirac equation,

(iy - @ —m(x)=0. (5.37)

Henceforth it will be convenient to define a “slash” operation A =y - A4, so
that (5.37) takes on the compact form (i — m)y = 0. To verify that (5.37) is
indeed covariant under homogeneous Lorentz transformations x’ = Ax, we
rely upon the discussion in Chapters 2 and 3 to obtain a 4 x 4 spinor matrix
F(A) which transforms the bispinor wave functions in a fashion analogous
to (2.1c),

V(x) = S (AW (x). (5.38)
Since the Hilbert-space operator is U, = exp(—iw*'J,,/2), the obvious
identification J,, — ¢,,/2 in the spin-3 Dirac space means we can write

F(A) = exp(—iw”o,,/4). (5.39)

An infinitesimal transformation A, - g,, + ®,, induces (5.39) to become
#(A) - 1 — iw*o,, /4, and the y-matrix identity (see Problem 5.2)

[0,0s Vol = 2i(g,, %, — 0 ¥) (5.40)

then leads to the transformation law for y-matrices,

SN AR S A) = Ay (541)
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[Note that (5.41) bears the same relation to the Lorentz group as (2.15) and
(2.52) do to the rotation group.] It is in the sense of (5.41) that y, transforms
like a four-vector; since y, is a constant matrix, y, has no meaning other than
(5.41). Then we establish the covariance of (5.37) by multiplying it on the left
with #(A):
0= F(A)iy - 0 — m)j(x)

= [#(A), &7 (A)io" — m]F(A)(x) (542)

= (iAL'70" — mpy(x) = (iy - O — mpy/(x'),
where we have used 9, = (9x, /0x™)?* = A_'d". Thus, (5.42) implies that the
Dirac equation (5.37) is valid in any frame x’ = Ax, an explicit demonstra-
tion of the meaning of covariance.

Now we extend the Dirac adjoint or “bar” operation to bispinor column
vectors. Define the row bispinor

W =¢". (5.43)
If Y satisfies (5.37), then y satisfies the adjoint Dirac equation
(if — m = §(—i§ —m) =0, (5.44)

since 3, = y,. Then using #(A) = %~ '(A), which follows from (5.39) and
G,y = 0,,, W have from (5.38)
V'(x) = P(x)F(A) = §(x)#~H(A). (5.:45)

Combining (5.38), (5.41), and (5.45), we can obtain the transformation laws
for the bilinear covariants yT'; yy (now “c-numbers” in the Dirac space, since
a row times a column matrix is a pure number-—see Problem 5.4),

St YW () = dlx(x) (5.46a)
Ve Wy (x) = AL p(x) (5.46b)
T: J(x)0, ¥ (x) = ASASY(x)o,9(x) (5.46c)
A XNy, ys ' (x) = (det A)ALP(x)i, ys P(x) (5.46d)
P: (X ysy'(x') = (det AW(x)ysy(x). (5-46e)

It is in this sense that the I'; transform like integral representations of %,
indicating, for example, that the Dirac probability current (5.6) and (5.7),
expressed in covariant form as

Ju =L 0 = lyo. YW = Uy, ¥, (547)

transforms as a four-vector, j,(x") = A,%,(x), with a continuity equation
0 - j = 0 which is invariant from frame to frame.

Dirac Trace Algebra. The bilinear covariants just discussed can be used not
only to construct the probability current j,, but also to form the S-matrix or
transition-probability matrix elements for a process involving a spin-4 parti-
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cle. In analogy with (3.87) we write
HIS|A = POMYD, (5.48)

where ¥ and %) are column and row bispinors which are eigenstates of
helicity, and M is a scalar 4 x 4 matrix composed of invariant products of
momenta and y-matrices. The complex conjugate (*) of (5.48) can be ex-
pressed in terms of the Dirac adjoint matrix, M = y, M'y,, according to

X [S|AY* = (FPOMYD)t = YoM
— 1050 MYy p) = PONIY
The physical quantity of interest is the transition probability, which corre-
sponds to the product of (5.48) and (5.49); summing over all possible helicity
states (unpolarized spin sum), we write

L [<ISIA =Y §®MPMy™), (5.50)

FE

(5.49)

where 2 is a Dirac “projection” operator

P =Y Yygw (5.51)

obeying 22 = 2 for orthonormal bispinors §** ¥ = §,.,. Rearranging the
bispinors in (5.50) to the form (M?M),. .37 J{3? a trace operation in the
Dirac space (Tr 4 =), 4,,), and using (5.51) again, we obtain finally
the unpolarized spin sum

;ZA [KAV|S|A) > = Tr M?MZ'. (5.52)

Now we shall show shortly that the projection operators 2 and 2’ can be
expressed in terms of y-matrices, so (5.52) represents in principle a trace over
the product of many y-matrices. Consequently it will prove useful to describe
the trace algebra of y-matrices. To begin with, in the Dirac space

Tr 1 = 4. (5.53a)

Inspection of the Dirac-Pauli or Weyl representation [(5.35) and (5.36)] or
application of the defining relations (5.28) and (5.4) along with the property
Tr AB = Tr BA gives

Try,=Trys=0, (5.53b)

Tr 9,7, =5 Tr{y, 7.} = g, Tr 1 = 4g,,, (5.53¢)
and from (5.30b) and (5.33b),
Trysy, =0,  Trysy,y, = —3ie s Tra* =0. (5.53d)

Next, note that (5.33c) then implies Tr y, 7, 7, = 0, which can be extended to
a product of any odd number of y-matrices 7,44 (excluding ys, which is an
even product y, y, ¥, ¥3) via multiplication of (5.33c) by successive pairs of
y-matrices, implying that

Tr yo9a = 0. (5.53e)
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For even numbers of y-matrices, (5.53a) and (5.53c) are nonvanishing; for
four y’s, use of (5.33c) or (5.33f) leads to

Tr 1,770 = 9w Fpo — GupGvs T+ JuaGve) (5.53f)
Tr ’YS ))u))v))pya = _48‘1\100’ (553g)

with &3,,3 = 1. The last identity may be verified by choosing u =0, v=1,
p =2, 0 =3, and using (5.30a). Multiplication of (5.33f) by y, y, leads to the
trace of six y-matrices, but at this point and thereafter it is easier to apply
repeatedly the anticommutation relation (5.28) to permute y, from one side
of an even number of y-matrices to the other and thenuse Tr Ay, =Tr y, A
to find in general (see Problem 5.5)

Tr 9,70 Y0% " =G T VoV =" = Gup TT 1,7,
+ 94 TT 9y, -+ —ete. (5.53h)

It is clear from the algebra (5.53) that including two additional y-matrices
in a trace can lead to a considerable complication. Quite often, however, the
indices of two of the y’s are summed (contracted), in which case repeated
applications of (5.28) results in (see Problem 5.5)

VaVu ¥ = = 2P (5.54a)

YaYuty ¥ = 4G4y (5.54b)

VaVu Vs V¥ = =29, %V (5.54c)

VaVu P Vo VoV = 2006 Vu P ¥p + VoV VuVo (5.54d)

etc. The identities (5.54) should be applied before computing y-traces accord-
ing to (5.53).

The y-matrix traces can be used to verify the completeness of the 16 Dirac
covariants I; of (5.32), with

Tr [T, = 4n;5,, (5.55)

where n; = +1forT; = L, yo, iy y5,0;and i, = — Lfor I'; = ys, y;, 170 75, G-
Then any 4 x 4 matrix can be expanded as M = > a,T; with the coefficients
from (5.55) found to be 4a; = n; Tr MT,. Also the completeness relation
(5.55) is needed to develop Fierz “reshuffling” matrices (see Problem 5.6).

5.C Free-Particle Solutions of the Dirac Equation

Positive- and Negative-Energy Spinors. In the spirit of the free-particle spin-0
analysis, we now examine the positive- and negative-energy solutions of the
covariant free-particle Dirac equation

(i# — ) (x) = 0. (5.56)
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For the positive-energy solution corresponding to a particle of momentum p
(with V = 1), we write

Y (x) = u(p)e® e E (5.57a)
while for the negative-energy solution with energy — E (E = /p* + m* > 0)
associated with momentum —p,

Y_(x) = v(p)e™ " *e'. (5.57b)

In both cases we require the spin-} particle of mass m to obey E? — p? =
p? = m®. Substituting (5.57) into (5.56) then leads to the momentum-space
Dirac equations

=1

(6 — myu(@) =0,  a(p)(p—m) =0, (5.58a)
(B +my(p) =0,  5(p)p +m)=0. (5.58b)

It is convenient to normalize the positive-energy spinors u(p) and the
negative-energy spinors v(p), choosing the signs according to (5.20), so that

uplu(p) =2m,  o(pjo(p) = —2m, (5.59)

while Y, are normalized covariantly in analogy with the spin-0 Klein-
Gordon solutions (4.7).

To obtain the free-particle solutions in the rest frame, we evaluate (5.58) in
the limit p, = m, p = 0, obtaining

you(0) = u(0),  309(0) = —v{0). (5.60)

[Recall that the notation u(0) emphasizes the p = 0 aspect of the rest-frame
wave functions; rest-frame two-component spinors will be written as ¢(p) as
a reference for rotations.] In the Dirac-Pauli representation with y, diag-
onal, (5.60) diagonalizes the energy (mass, in the rest frame) with the spinors
expressed as

u(0) = /Zm (‘g ) b(0) = \/2m (2) (5.61)

where ¢ and y are two-component spinors, both normalized to unity in
order that (5.59) may remain valid. In particular, we further specify these
two component spinors as helicity eigenstates @(p) and Y (p) =
e @'Y —p) [so that v(p) represents a state with momentum —p =P, _4 .+,
in the latter case—see (6.46)], obeying the eigenvalue equation (3.89), i.c,,

o - po(h) = 20(b) (5:62)

and represented by the rotated spinors (3.91). The reason for the choice of
phase e ™ for A = +% in y(p) will be explained in Chapter 6.

We may also recognize {5.60) as equivalent to the boost constraint (5.20)
in the Lorentz-group derivation of the Dirac equation. In this case, the
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covariant version of the Dirac boost matrix (5.23) is, since E + a - p = pv,,

2(L,) = [2m(E + m)]"*(pyo + m)

. (5.63)
= cxp(—mlwp T ),

4

so that 2(L,) = #(L,). Application of this boost to (5.61) and using (5.60)
with 4 = +3 then leads to

u(p) = D(L,Ju(0) = % (‘p(l(;(ﬁ )), (5.64a)

v4(p) = D(L, p'"(0) = % (e¥i¢(pg)( _ﬁ))‘ (5:64b)

From the form of (5.64) it is clear that these bispinors satisfy the free-particle
Dirac equations (5.58), since pp = {8, p} = p> = m? implies that

(b — mu®(p) oc (p — m)(p + m) = p* —m? =0,
(p + mpp™(p) o< (p + m)(p — m) = p* — m* =0.

Further, the bispinors (5.64) are indeed helicity eigenstates, obeying by
virtue of (5.62) and [o - p, ] =0

1o - pu(p) = uY(p), (5.65a)
—3o - pv¥(p) = Aw¥(p) (5.65b)

for A = 43, where o in (5.65) is now the four-component Dirac spin matrix.

Thus, the advantage of the explicit boost construction in the Dirac-Pauli
representation (5.64) is that it manifests both the Dirac equation and helicity
constraints satisfied by positive- and negative-energy bispinors. Moreover,
the connection between u(p) and v(p) for momentum states —p in the latter
case is made readily apparent by (5.64). There is another use for the boost
operator, that of “de-boosting” u(p) and v(p) back to the rest frame,
sometimes referred to as the “nonrelativistic reduction” procedure. Recalling
that —yy, = iys 6, we express the boost (5.63) and its Dirac adjoint in terms
of the even (diagonal) operator 1 and the odd (off-diagonal) operator ys¢ - p
in the Dirac-Pauli representation, converting the bispinors to the form

E+m+iyse-p (0P (p
u(p) = \/E+—fn ( 0( ) , (5.66a)

E+m—iyse-p

aA(p) = (" ™(p), 0 5.66b
#?(p) = (p"*(B), 0) JE+m (5.66b)
E+m+iyso-p 0
@(p) = . 5.
E+m—iyso-p (5.66d)

59(p) = (0, ¢~ p) Tt
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The nonrelativistic reduction of bilinear covariants such as #I';u can be
easily obtained using (5.66) to identify the net even operators (in the Dirac-
Pauli representation) of 2T; 2. For aI'; u and oI'; v, only net even operators
(two-component diagonal) contribute, while for aI'; v and 5T u only net odd
operators (two-component off-diagonal) do (see Problem 5.7).

Free-Particle Projection Operators. Recalling that the two-component
spinors satisfy the completeness relation

2
Z <p‘“ T(}.) l‘)) 1 (5.67)
A

we expect the four-component bispinors to obey some sort of analogous
relation. Given (5.64) and (5.67), we may compute

(E+m) S Eup) = 6+ m)y o) ¢+ m)

= 3(p + m)(1 + yo)(p + m).

With the help of the anticommutation relations (5.28) and p* = m?, we see
that pyo p + m*yo = 2Ep, (vo P + Pyo) =2E, and (p+ m)* = 2m(p + m).
Then the factor of (E + m) cancels from both sides of (5.68) and we obtain

(5.68)

2
Y upla(p)=p+ m, (5.69a)
A
and similarly
2
Y v AP (p) = p — m. (5.69b)

A

These useful relations can be verified by applying the Dirac operator (p — m)
to (5.69a) and (p + m) to (5.69b); the normalizations are easily confirmed in
the rest frame via (5.61). The identities (5.69) define respectively positive and
negative projection operators in the sense of (5.51). That is,

+p+m
2m

AL(p) = (5.70)

are normalized energy projection operators obeying A3 = A, and
A, A_ =0 for p> = m?. The additional identity A, + A_ = 1, or equiv-
alently from (5.69),

2. (W(p)a(p) — v(p)p“(p)) = 2m (5.71)

A

is the Dirac analog of the two-component completeness relation (5.67).
The usefulness of the energy projection operators (5.69) is that, for an
S-matrix specified by positive- or negative-energy free-particle bilinear co-
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variants, the general unpolarized-spin sum (5.52) becomes in particular

Z | a A (p )IMuP(p)|? = Tr M(p + m)M(p' + m), (5.71a)
Z |5 (p")MuvP(p)|> = Tr M(p — m)M(p' — m), (5.71b)

and similarly for aMv and tMu.

It is also possible to construct a covariant spin projection operator. In the
rest frame of the spin-3 particle, such a spin projection operator is
3(1 + o - §), where § is the direction of spin polarization (§ — p corresponds
to a helicity projection operator). Defining s, = (0, §) and m, = (m, 0) in the
rest frame, so that m - s =0, it is clear that in a boosted frame p - s = 0.
Then, replacing ¢ by —iysyy, and dropping the noncovariant factor y,
{since Py, does not change sign when applied to either u or v), we obtain the
covariant spin projection operator

Z(s) = 31 + iys ). (5.72)

The invariant length s> = — 1 means that £?(s) = Z(s), characteristic of any
projection operator. We may then compute positive- or negative-energy
polarized spin sums using the Dirac trace algebra by simply replacing, say,
p+ m in (5.71) with Z(s)(p + m) (or (p + m)Z(s), since [ys§, p] = 0) for a
particle whose spin is not unobserved, but pointing in the “direction” s.
Specific helicity states can then be generated using s, = +(p, Ep)/m in (5.72),
whereas spin representations other than helicity follow from a different
choice for s,.
Finally, a third set of Dirac projection operators

P, =31 +iys) (5.73)

will prove useful for our later work. They too obey P2 =P, P, P_ =0,
and P, + P_ =1 One immediate application of (5.73) stems from
P, y,=y,P_, which means that for free particle bispinors i = m~'idys we
have P, iy = m™'igP ; s, so that

=P, g+ P_y=m i+ mP, . (5.74)
Thus for ¢ = P, y,
(ig —mp = —m~ Y3 + m*)¢ =0, (5.75)

which says that, given ¢ obeying the less restrictive Klein-Gordon equation
{for bispinor wave functions), one may obtain y via (5.74) which satisfies the
more restrictive Dirac equation provided ¢ = P, . This is reminiscent of
our second derivation of the Dirac equation built up from two-component
spinors related by the differential operator in (5.16), here equivalent to (5.74)
in the Weyl representation. In the above approach, the Dirac-Pauli re-
presentation reduces (5.75) to two identical two-component spinor equa-
tions. This is true even in the presence of electromagnetic fields, and we shall
take advantage of this fact shortly.
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Free-Particle Probability Current. We have noted in (5.6), {5.7), and (5.47)
that the bilinear covariant yy, s is the natural choice to represent a con-
served probability current density. Consider the current density constructed
from the free-particle positive-energy wave packet similar in structure to the
Klein-Gordon form (4.13a), normalized in a box:

H{x)= J 2EV* a, u(p)e” '~ (5.76)

(where we have deleted the helicity summation for clarity), giving

1 (& ;&
Ju (x) =)y 4 (x) = Vf °E f 215 ay a P | [p>e ™,
(5.77)

with g = p’ — p. The off-diagonal momentum-space current is then

<P 9> = wp)y,u(p). (5.78)

In this language, current conservation 0 - j(x) = 0 is equivalent to

g*<p |j; |p> = a(p')qu(p) = a(p’)(p' — Plul(p) = (m — m)au = 0,
(5.79)

by the free-particle Dirac equations (5.58a). An analogous negative-energy
packet with E = ./p? + m? > 0,

d3
— * ip-x
b-(x)= [ 525 bRo(p)e” %, (5.80)
leads to a {p’|j, |p> which is also conserved in the sense of (5.79).

As we have already noted in Section 4.C, such off-diagonal momentum-
space currents play an important role in the theory in their own right.
Consider first a useful identity called the Gordon reduction. Defining
P =3(p' + p), g = P — pand using the y-matrix property (5.31a), it is easy to
show (Problem 5.8) that

i6,,4 =Py, + y.p— 2P, (5.81)

Sandwiching this identity (5.81) between free-particle positive-energy
bispinors, we note that p’ operating to the left and p to the right both become
m in (5.81), again by the free-particle Dirac equations (5.58a). Rearranging
this result, we obtain a form of the Gordon reduction,

.y o (Pa L g

a(p')y, u(p) = u(p') (—rf + ——z‘im—)u(p), (5.82)
where the P, and ¢, ¢" terms in (5.82) are called the convection and spin
currents, respectively. Clearly, relations similar to (5.82) can be generated by
sandwiching (5.81) between # and v, or # and v, or ¥ and w.
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As a by-product of (5.82), the diagonal matrix element can be obtained
with g=0and P = p:

u(p)y,u(p) = (p,./m)is(p)u(p) = 2p,. (5.83a)

This result is “obvious” from covariance considerations alone, because the
left-hand side of (5.83a) must be a simple four-vector and the only candidate
depending upon p is p,, with a normalization factor following from the
contraction with p* using p? = m® and the Dirac equations (5.58). In a
similar manner we deduce that

o(p)y,v(p) = (— p./m)i(p)o(p) = 2p,. (5.83b)

We may now calculate the expectation value of the Dirac velocity opera-
tor a. Noting that the spatial integral of (5.77) generates §°(p’ — p), which in
turn picks out the diagonal matrix elements of j,7, we use (5.83a) to write [a
similar relation holds for the Klein-Gordon current (4.62)]

+p

SEV |a, |*p,/E, (5.84)

[dxjix )=
with an analogous relation for j, , where a, is replaced by b,. For u = 0 we
see that py/E =1 in (5.84) as well as for the j, integral. Since these j§
integrals are | dx Y% (x) . (x), the latter integrals normalized to unity as
the total probability, we learn that

1 &p , 1 .adp 5
v]ag 16l =y 5 Il =1 (583)
Next we evaluate
[@xjtx, 1) = [ dEx vLx) (0 = <., (5.86)
and from (5.84) conclude that
(ay; = <§> = Ve (5.87)
s

where the latter two averages in (5.87) are weighted over the momentum-
space probabilities (5.85). The important result (5.87) simply states that the
positive- or negative-energy wave-packet expectation value of the current is
just the relativistic group velocity v,, a conclusion paralleling the nonrelati-
vistic situation (1.6), and expected in this case because in the Heisenberg
picture,

dar; . )
d—tj = i[H, r,-] = o[y, rj] = &;. (5.88)

Zitterbewegung. It turns out, however, that both positive- and negative-
energy states must be included in the construction of the eigenfunctions of a.
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Consider then the general packet (again suppressing the helicity summation)

Y(x) = J 2(235% [a,u(p)e™ 7 * + b¥v(p)e'r ), (5.89)

and computing {a) as before leads to

a . .
= (F )+ | G L6t Apan( w4 gyby ool 1

(5.90)

As was the case with the Klein-Gordon equation, the cross terms between
the positive- and negative-energy states oscillate violently in time. Unlike the
Klein-Gordon situation, however, the free-particle amplitudes multiplying
the oscillating phases in (5.90) need not vanish as p— 0. To see this, use
a = iys 6 and the forms (5.66) to obtain the nonrelativistic reductions (Prob-
lem 5.7)

u(pleo(—p) = 2me'(pse(p),  o(—plu(p) - 2me'(plop(p).
(5.91)

Thus Dirac Zitterbewegung is nonvanishing to zeroth order in momentum.
While unphysical consequences can be avoided for free particles by choosing
either a positive- or a negative-energy packet as in (5.76) or (5.80), for bound
states this cannot be done. We return to this latter problem shortly.

5.D Dirac Equation in an External Field

Covariant Electromagnetic Interactions. Following the procedure used in the
Klein-Gordon analysis of a particle in the presence of an electromagnetic
field, we consider for spin-; particles the minimal replacement of id, by
id, — eA, in the Dirac equation (5.37), giving

(0 — ed — mpp(x) =0, or (if — miy(x) = eMY(x).  (592)
We will assume that this minimal coupling eA represents the fundamental
interaction between the spin-3 particles and photons. As in Dirac’s original

approach, the bispinor equation (5.92) obeys a Klein—-Gordon constraint,
obtained by multiplying (5.92) on the left by the operator i§ — eA + m:

[(i0 — ed)? — m* — ej0,, F*Y{x) =0, (5.93)
where we have used the anticommutation relations of the y-matrices to write

GAY + A =3[y, 2™ + 0 - (AY).

We see from (5.93) that the Dirac wave function also obeys the Klein-
Gordon equation in the presence of an external field (4.24a) apart from the
spin-dependent factor

30, F* =ia-E—o B, (5.94)
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which couples E and B respectively to the electric and magnetic dipole
moments of the spin-{ particle. In particular, an energy eigenstate of y(x) in
(5.93) obeys, for E2 — m> = 2mE, + -+,

e
Exel= —5 ¢ By +-, (5.95)

showing once again that p = es/2m and g = 2 are natural consequences of
the Dirac equation.

It is also interesting to investigate the Dirac probability current, j, (x), in
the presence of an external field. In spite of the absence of a derivative term
in ¥y, ¥, one may consider the Gordon decomposition in coordinate space
analogous to (5.82) and then make a minimal replacement to find (see
Problem 5.8)

1) = o B — & BOWAL) + 5 PG, ()

(5.96)

It is clear that the first two terms in (5.96) have the same form as the
nonrelativistic and Klein-Gordon current density (4.26), covariantly nor-
malized in the latter case. The first and third terms in (5.96) correspond to
the Gordon decomposition for 4, = 0. As in the spinless case (4.27), current
conservation ¢ - j(x) = 0 is an obvious consequence of (5.96).

Dirac Form Factors. Following now the discussion in Section 4.C, the prob-
ability current density j,(x), whether due to nonrelativistic, Klein-Gordon,
or Dirac particles, plays a dual role because ej,(x) represents a charged-
matter current density which is a source for the electromagnetic field,
[JA, = ej, (in the Lorentz gauge). Thus the spin-3 analog of the momentum-
space current (4.63b) in the presence of an electromagnetic field for positive-
energy scattered particles, obtained from (5.96), is

e<p'|ji; [P = ea(w) |Fi(@*)y, + Falq®) wz“\;zq up). (597
This is the most general form consistent with Lorentz covariance and the
Dirac equation. The four-momentum transferred from the photon to the
spin-} particles is ¢ = p’ — p, and the dimensionless invariant form factors
F,,(¢*) parallel F(q%) in (4.63b) for spinless particles. For free photons,
g*> = 0 and we must have F,(0) = 1 in order that the coefficient of &y, u in
(5.97) may be simply the charge e, consistent with the free-particle probabi-
lity current density (5.78). Thus F,(q?) is called the charge form factor. For
q* # 0, the photon is not free, and the second term of (5.96) contributes to
both F(¢?) and F,(q?) of (5.97) in a complicated dynamical manner. We
shall return to the ¢* dependence of these form factors in later chapters.
Concerning the magnetic form factor F,(¢”) in (5.97), since the y, current
already consists of a convection and magnetic moment part as given by
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(5.82), with g = 2 in the latter case, the additional magnetic-moment term in
(5.97) described by F,(g?) represents an anomalous correction to g = 2. That
is, at g =0,

F50) =« =3(g —2) (5.98)

is the dimensionless, anomalous magnetic moment of a spin-} particle. For
the electron (e < 0),

e

= 1 ~ (1.00 .
o= g (14 1) % (1001) .7 (59%)

or x, ~0.001, due totally to electromagnetic interactions. For the proton
(e>0),
e e
Hp=s - (1+x,)=(2.79) Tt (5.99b)
p P
or k, ~ 1.79, primarily due to strong interactions—as is the anomalous
magnetic moment of the chargeless neutron,

e [4

=0+ x,) ¥ (= 191)

5.99
mn 2mn ’ ( C)

or x, ¥ —1.91. In Chapter 15 we shall show that the minimal (QED) cou-
pling in (5.92) ultimately generates x, = a/2n + O(x?), in perfect agreement
with experiment. It will also turn out that we can estimate x, and , better
than we have a right to expect. Lastly, the form factors F, ,(g*) are not a
unique description of the dynamics of spin-} particles interacting with an
external electromagnetic field. Two different but equivalent descriptions in
terms of the Sachs form factors Gg(q?) and G,,(¢?) are worked out in Prob-
lem 5.8.

Constants of the Motion. For a free-particle hamiltoman « - p + fm, the
fundamental commutation relations (5.4) lead to

[H,r x p] = —ia x p, [H, 6] = 2ia x p, (5.100)

and it is therefore clear that the total angular momentum J=r x p + 16
and helicity 4o - p are conserved operators. In a central, spherically symme-
tric field V = V(r) = eA, with A = 0, the Dirac hamiltonian becomes

H=oa p+ pm+ V(r), (5.101)

and while commutation relations similar to (5.100) become more cumber-
some to apply (see, e.g., Sakurai 1967), group-theory arguments alone tell us
that the total-angular-momentum operator must remain conserved.

To simplify the search for constants of the motion and their eigenvalues
for spin- particles, it will prove convenient to reduce the four-component
Dirac analysis back to two-component form. We consider then the less
restrictive second-order equation (5.93) satisfied by a Dirac bispinor i for



84 Spin-} Dirac Equation

positive-energy stationary states with t =p — eA and eE= —VV, B=0,
(t+mt—myy=[(E—-V)?+V2—m?+ia VV]y =0. (5.102)

Multiplying (5.102) on the left by the projection operators P, = 3(1 + iys)
of (5.73), we see that the four-component wave function ¢ = P, y satisfies
(5.102), and the more restrictive Dirac wave function, obeying Hy = EY, is
then recovered from ¢ by

y=m(t+mip=m [y(E-V)—y-p+mlp, (5103)

a situation similar to the free particle case (5.74). Next we work in the
Dirac-Pauli representation with P, = (! }), giving

¢=P.y= (g). (5.104)

Then the four-component equation (5.102) reduces to two identical two-
component equations [for V = V(r)),
1 02 L? dv

(E~V(r))z—m2+rWr—:;+ic-f;](p=0, (5.105)
equivalent to the Klein-Gordon form (4.29) except for the last spin-
dependent term. If all we are interested in is the quantized energy levels, then
we need only deal with (5.105), converting it to the form of the Schrodinger
equation as in the Klein-Gordon case. We need not bother with recovering
¢ from ¢ via (5.103) and (5.104).

In order to separate variables in (5.105), we specialize further to a single-
electron atom with V(r) = —Za/r and dV/dr = Za/r®. It is then natural to
incorporate both ¥? and the spin-dependent term in the angular part of
(5.105) along with L?/r?, since these terms all fall off like r~ 2. In particular
we make use of the two-component decomposition o,0; = J;; + ie; o) to
write

L’=¢-L{l+0-L)=(1+6-L)*—(1+6-L) (5.106)
This suggests that we define the two-component spin operator
—A=(1+6"L)+ (Za)ic - f, (5.107)
which has the square
A= (1+o0"L)* - (Za) (5.108)

the cross terms in (5.108) dropping out because of the identity (see Problem
5.9)

{(l1+o-L)o-=0. (5.109)

Combining (5.106)-(5.108), we see that the coefficient of —r~ 2 in (5.105) has
the simple form of an angular-momentum operator

L? — (Zaio - f — (Za)2 = A2+ A = A(A + 1). (5.110)
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Next we obtain the eigenvalues of A% and A by squaring J = L + 1, to
write for states j =1+ 3=,

2 23y !
(6-L),=(°-L —z)ji—<_(l+l)}, (5.111a)
(1+6-L), = {If,1}= +(j + 1), (5.111b)

where the upper (lower) cases in (5.111) correspond toj =1+ 3 (j=1— 3).

Then we have
(A%, = (G +3) = (Zo)%, (5.112a)
(A)y. = F[( +3)° — (Zo)] = F4, (5.112b)
where the signs in (5.112b} are determined by (5.107) and (5.111b) with — A
intrinsically positive for j = | + 4 and Za — 0. Following the Klein-Gordon

analysis, we may now express the radial equation for the Dirac atom in the
form of (4.30a),

1d? ra +1 2EZ
I:;Fr— Uy, ra:|¢(r)=—(E2—m2)<P("), (511

with (5.110) and (5.112) giving, for j = [ + 4,
ol + 1) = [AA + 1)];, = AL F 1), (5.114)

Solving (5.114) for the effective orbital-angular-momentum eigenvalue, we
see that

I, = [A- 1}. (5.115)

As before, we have chosen the nonnegative solutions of I' in (5.114) as
Za — 0, for otherwise the radial solution " will not be regular at the origin.

The orbital constants of the motion now being understood for the Dirac
atom, we proceed as in the Klein-Gordon atom to find the energy
eigenvalues. Since the radial equations are identical in the two cases except
for different values of I, we may conclude that the energy levels of the Dirac
atom also are of the form (4.32b),

E=m

1+ (Zn?‘z)zl—*, (5.116)

with ' — I’ = n — [ constrained to the integer values 1, 2, ... as before. Sub-
stituting ' given by (5.114) then leads to

n=n—Il+l,=n—(G+3)+[(+3)7° - (2] (5.117)

for both j =1+ 3. [Note that this two-component analysis eliminates the
need for an auxiliary quantum number k, appearing in the four-component
analysis. See e.g. Sakurai (1967).] We see that the energy levels of a Dirac
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atom are identical in form to the Klein-Gordon levels, but with [ in (4.34b)
replaced by j in (5.117). Note too that for s-waves and j = 4, the square root
in (5.117) becomes imaginary unless Z < 1/a.

In the strong-field limit, Z > 1/a = 137 and the breakdown of the bound-
state Dirac solutions is similar to the Klein—-Gordon case with Z > 1/2a.
Once again, the breakdown has a classical analog for (Za)? > I with multi-
particle quantum states modifying the single particle orbit at short distances.
These effects are not fully understood, nor have they been detected
experimentally.

For Zu < 1, one can expand (5.116) and (5.117) in powers of (Za) to find
the fine-structure corrections to the Bohr formula for a single-electron atom

(n=1,2,..) . 2
m(2iit) [H(Zz) (}_1 _3”, (5.118)

+4 4n

ENR=E—m=_"

now degenerate for a given value of j. We shall return to a detailed study of
the hydrogen energy levels shortly. Finally, an analysis of the Dirac wave
functions (proportional to associated Laguerre functions), based upon this
two-component approach, depends upon (5.103). [See Auvil and Brown
(1977).] Alternatively, the entire (and more complicated) four-component
analysis of Hys = Ey can be carried out in a straightforward manner [see e.g.
Bethe and Salpeter (1957)]. For our purposes, the above analysis of the
energy levels alone will suffice for our later work.

Before leaving this topic, it is worth mentioning that the two-component
form of (5.93) also can be used to obtain the constants of the motion for
spin-3 problems other than the one-electron Coulomb atom. Consider, for
example, an electron of momentum p moving through a region of constant
magnetic field, B= Bé, and A = 4B x r = 1B(—yé; + x&,) with 4, =0.
Applying the projection operator {5.104) in the Dirac-Pauli representation,
the four-component equation {5.93) once more decouples into two identical
two component equations:

[E2 — (p — eA)* — m? + eBa;]p = 0. (5.119)
Since V- A=0and A - p= 4B - L, we may write (5.119) in the form

[Pz + by + (eB/2)*(x* + y*)lo = [E* — p} — m* + eB(L; + 0;)]e.
(5.120)

Separating the z variable from the x and y variables in (5.120), we replace the
operator p; by the eigenvalue p3, and the magnetic-moment operator (pro-
portional to L, + ¢,) by the Zeeman-splitting eigenvalues I, + 1 on the
right-hand side of (5.120). The left-hand side of (5.120) has the structure of a
nonrelativistic, two-dimensional harmonic-oscillator hamiltonian with a

potential
2

B
1 x4y, (5.121)

1
_ 15(v2 2y _
V—zk(x +y ) (zm) 5
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corresponding to an angular frequency of
w = \/kim= |eB|/2m. (5.122)

Since the eigenvalues of such an harmonic oscillator are known to be of the
form

Eypo = (n,+ 3o+ (n, + )o = no, (5.123)

where n=n,+n,+ 1 =1,2, 3, ..., we may identify the right-hand side of
(5.120) as 2mkE, . This leads to the constant of motion

E?=p2+ m? + n|eB| — (I, + 1)eB, (5.124)

with E? > p3 + m? implying n > |I5] + 1. Thus we see that the energy and
angular-momentum eigenvalues of a spin-3 particle in a magnetic field can
be found from (5.93) in a manner similar to those for the Klein-Gordon or
Dirac atom. The two-component and four-component bispinor wave func-
tions for this problem are proportional to Hermite polynomials, as might be
expected from the structure of (5.120). (See Problem 5.10.)

Nonrelativistic Reduction. While the exact energy eigenvalues for a relati-
vistic spin-} particle in an external field can always be obtained as in the last
section, 1t is nonetheless of interest to expand the Dirac equation (5.92) in
powers of Eyg /m, where Ey, = E — m. Starting with the Dirac hamiltonian
(V=eAy,n=p—eA)

H=a'n+fm+ 7V, (5.125)

we may express Hyy = Ey in the Dirac—Pauli representation as

(E—m—V 6 m )(fp)zo, (5.126)

—6 'R E+m-—-V]\y
This results in two coupled two-component spinor equations
(E—m—V)p=06"mny, (E+m—V)y=o0"nop. (5.127)

For weak potentials V < E = m, @ oc V™ !y is large while y oc m™ ¢ is small.
Identifying then ¢ as the relativistic extension of the nonrelativistic Schro-
dinger wave function, we eliminate y in (5.127) to find (Eyg = E — m)

Hyg® = Eng @, (5.128a)
1 Exg — V7!
HNRZEU'W(I“}'*ﬁBz?n“—) ¢ n+ V. (5.128b)

Assuming (Eyg — V)/2m < 1, we expand

— ~-1 .
(1 +E%«l) SR EN—;—W (5.129)
m m
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The leading term in (5.129) then converts (5.128b) to

(o - n)? n? e
V= —-—06"B+V, 5.130
2m 2m  2m ( )
where we have used (5.13) to obtain the Pauli magnetic-moment term with
g = 2, a result now expected.
To next order in the expansion (5.129), we set A = 0 to isolate the correc-
tion terms due to a weak electrostatic potential V:

Do
H\Q =

HQ =" +V+H, (5.131a)

dm*H'= — o PExg — V)o - p
= —(Exg = VP’ +io - (pV) xp+ (pV) " P,
(5.131b)
where ;0; = &, + igjz0, and p;Vp, = Vp* + (p;V)p; have been used to

obtain (5.131b). The first term in (5.131b) represents a relativistic momen-
tum correction, since to leading order Ez — V = p?/2m means that

2 4

' P P
rel — _(ENR — V)Z)? ~ —W‘ (5132)

This potential then corresponds to the usual kinetic-energy correction

2 4

14
T=m(y-1)z%—w+---. (5.133)

The second term in (5.131b) can be written for a spherically symmetric
potential V = V(r) as

. dv . _(ldVy
is - (pV)xp= (E;)o (Fxp)= (r dr)o L. (5.134)
Consequently this term generates the familiar spin—o«bit interaction in
(5.131),
1 (1dV
H,6=—|-—]o L 5.135
o= (5 ) (5.139)

Note that this relativistic derivation of H, , includes the troublesome factor
of § referred to as the Thomas precession, a factor which must be introduced
in a subtle manner in the usual nonrelativistic derivation of (5.135) when
transforming from the rest frame of the electron to the laboratory i.e. rest
frame of the nucleus (Problem 5.9).

Finally, we interpret the third term in (5.131b), but first note that
(PV) - p= —(VV) - V is not an hermitian operator. To convert it to hermi-
tian form, we sandwich this term between a spatial integral over wave func-
tions @* and ¢ in a symmetric fashion and then integrate by parts.
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Discarding the resulting surface term, we are led to the real integrand
(PV) - p— —He*(VV) - Vo + 9(VV) - Vo*] - 2o*(VV)p. (5.136)

Alternatively, one can understand (5.136) as due to a “renormalization” of
the large-component wave function ¢, no longer the exact nonrelativistic
Schrodinger solution to O(p?/m?), but related to it by Yz = (1 + p?/8m?)e
[see e.g. Sakurai (1967)]. In either case one is led to the hermitian Darwin
interaction

1
Hpur. = 5 (V2V). (5.137)

While this hamiltonian does not have an obvious analog in the usual non-
relativistic formulation, it can be understood as a consequence of the relati-
vistic effect of Zitterbewegung. To see this, account for the electron jittery
motion to order of the Compton wavelength, ér < m™!, by the expansion

\ 2V 1
Hyy = V(r + 1) = V(r) = 3 6r; r; aror T ~ 3(
i 01

or)?Viv,

(5.138)

where symmetry dictates that the first-order term in (5.138) vanishes and the
second-order derivatives are $V2. Comparing (5.138) with (5.137), we see
that (m ér ~ 1)

Hp,, = 3(m 6r) *Hy ~ Hya.- (5.139)

Fine-Structure Energy Levels of Hydrogen. To cap the discussion on bound
states, we return to the Coulomb energy levels (5.118) for a Dirac atom, now
specializing to the hydrogen atom with Z = 1:

mo? a? [ 1 3
=—M m—_— S.
Exe 2n? [ + n (]+% 4n)] (5.140)

To understand how (5.140) arises in the context of Schrodinger theory, we
write Hyg = Hy + H', where H,, i1s the lowest-order Schrodinger hamilton-

ian with V = —oa/r, which generates the Bohr energy levels forn=1, 2, ...
(structure):
2
o mo a
= = — ) 5.1
En 2n2 2a0n2 ( 41)

The small splittings of (5.141) to O(«?) are the fine-structure corrections
caused by H' as given by (5.131b), viz,

H=H,_,+H,, +Hp,, (5.142a)
generating the first-order perturbation-theory shifts
AE5 = (nl|H' |nly = (nl{H g |nly + <nl|H, |aly + (nl| Hp,, [ nl),

(5.142b)
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where |nl) refers to the usual unperturbed Laguerre eigenfunction solutions

0
n[(r)'
To calculate the relativistic momentum-correction shift, note that

1,00 o, %} 0
— = = 5.14
2m p nl (En + r) nl ( 38)

implies the square

1 2
i (nl|p*|nly = <nl (Eg + %) nl>, (5.143b)
where one may easily verify that
_ ma _ m?a?
(n[]r 1|nl>=7, (nl]r 2|nl>=m (5144)
Then combining (5.143) and (5.144) with (5.132) we find
) 1 . mo* [ 1 3
(nl|H,el,|nl>— —-W (n[lp |nl>— —F [r{__% _Zﬁ], (5145)

which breaks the I-degeneracy and is in fact the entire fine-structure shift for
the Klein-Gordon atom (4.35).
The spin-orbit shift is found from (5.111a), (5.135) with dV/dr = /r* and

s m3a3
(nl|r |n[>=n3l(1+%)(l+ )’ (5.146)
giving
, o o L
(nl|H,, |nly = an? <nl 3 n[>
mo*
= i4n3 (_] +%)(l + %) (1 - 6!,0) (5147)
for j=1+ 1, but zero for I = 0.
Lastly, V2V = 4nad(r), and at the origin
m3o?
WSO ="2 5, (5.148)
which converts (5.137) to the Darwin shift
4
, ot mo.
(nlIHDa,, | nl) = —2—"13 (nl|63(r)|nl> = ﬁ 6,,0. (5149)

While this Darwin shift is nonvanishing only for s-states, the important
point is that it is precisely what the spin-orbit shift would be for { = 0 if
1 — 9, were replaced by 1 in (5.147). In a sense then, the effect of Zitterbew-
egung on the Dirac atom corresponds to a “continuation in {” of the spin—
orbit energy shift down to [ = 0.
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n=2

Ef 2P3/2
; 2S/2

28I/2 ’2Pl/2 2PI/2

Structure Fine Structure Lamb Shift
ma? ma*4 ma®

Figure 5.1 The n = 2 energy-level splittings in hydrogen.

2§, and 2P, energy levels are not degenerate. Rather, the 25, line is shifted
upward relative to the 2P, state by some 1058 Mc/sec, as pictured in Figure
5.1. While the theory of this “Lamb shift” is now well understood, a detailed
explanation must be postponed until Chapter 15. Qualitatively speaking,
this shift is caused by the “cloud” of photons and virtual electron-positron
pairs which surround the bound electron, modifying its form factors as given
in (597) and the resulting Coulomb interaction with the proton nucleus.
Suffice it to say now that theory and experiment agree exactly to five
significant figures, a truly remarkable result rarely equaled in modern
science.

S.E Wave Equations for Other Fermi Particles

Thus far we have explored the consequences of the Dirac equation for
massive, spin-3 fermions (e.g., electrons, protons). We now consider wave
equations for massless spin-4 fermions (neutrinos) and also massive spin-3
fermions (e.g., the A, 33 “resonance”).

Massless Spin-} Particles. Recall from the discussion in Section 3.D that the
two helicity states for a massive spin- particle, 1 = +34, become reduced to
just one helicity state as m — 0. The explicit structure of the two-component
spinor boost operator in (3.94) shows that the A = § right-handed massless
state (with spin parallel to the momentum) survives for the (0, ) representa-
tion, while A = —3 survives for the (3, 0) irreducible representation of the
homogeneous Lorentz group. Experiment alone (see Chapter 13) has deter-
mined that the massless neutrino is left handed and the antineutrino is right
handed. Consequently the two-component (3, 0) free-particle wave function
¢, for a neutrino satisfies a wave equation inferred from the boost in (3.94):

(10, + & - p)p..(x) =0, (5.155a)
whereas the (0, %) right-handed antineutrino wave equation is
(10, — & - P)pgs(x) =0. (5.155b)

These equations also follow from the m = 0 limit of (5.17).
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While these wave equations were first obtained by Weyl (1929), they were
rejected for 28 years because of noninvariance under spatial reflection
(¢ = @r, ®r — @) We shall return to this subject in Chapter 6. To link
(5.155) with helicity eigenstates, note that the plane-wave solution of
(5.155a) for positive-energy states, proportional to e ' * with E = |p|,
satisfies

o - po.,(p) = —@L,(p) (5.156a)

in accordance with a left-handed neutrino. Likewise, the plane-wave solu-
tion of (5.155b) for positive-energy states, proportional to (e™7"*)* with
E = |p|, obeys

o Pors(P) = Prs(p); (5.156b)
corresponding to a right-handed antineutrino. On the other hand, the plane-

wave solution of (5.156b) for negative-energy neutrino states, also propor-
tional to e’ * with E = |p|, satisfies

6 po,_(—p) =&, (-p). (5.156c)
Comparing (5.156b) and (5.156c), we see that
¢rs(P) o 0, (—P)- (5.157)

This is our first concrete example of the Feynman interpretation, identifying
a negative-energy particle state with a positive-energy antiparticle state.
More examples will be given in Chapter 6.

It is possible, and extremely useful, to couch these two-component neu-
trino equations in four-component Dirac language. One way to proceed is to
note that (5.155) corresponds to (5.17) with m =0 along with the
identification ¢; = @, @gr — Pr;- We employ the (extreme relativistic)
Weyl representation for the y-matrices, (5.36), and apply it to the projection
operator P, = (1 + iys) of (5.73):

P+=(g (1’) P_=((1) g). (5.158)

Then we define the Weyl-representation bispinors

) = Pt = (P)), (5.159)
vrslP) = P vps{p) = (e_%vo_ (_p)) (5.159b)

with the positive-energy bispinor u; (p) describing a left-handed neutrino
and the negative-energy bispinor vg,(p) describing a right-handed antineu-
trino, and both having momentum p. As for the four-component dynamical
equations that these bispinors satisfy, since P, projects out the lower
negative-energy components in the Weyl representation and u; , has no such
component, it is obvious that

Pyuy, =3(1 +iyshu,, =0, (5.160a)
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and similarly,
P_vg, = 31 — iys)vgs = 0. (5.160b)

We may also proceed by starting with the free-particle Dirac equations
(5.58) for m =0,

pulp) = po(p) = 0, (5.161)

then multiplying (5.161) on the left by iy 7, and using iys 7,y = o, E = |p|
we obtain

L i’u(p) = WS “(P), L f)v(p) = _l'})s U(p) (5162)
Next observe that the bispinor helicity eigenstates (5.65) become in this case
o - pu,[p) = —u,(p), —6* PUgs{P) = vgs(P)- (5.163)

Combining (5.162) with (5.163), we are once more led to (5.160).

Another useful bispinor expression for massless fermions is the probabi-
lity current density j, =yy,y. Applying (5.159), we may write the
momentum-space current for Weyl neutrinos obeying (5.155) as (dropping
the factor of 4 in P_ by convention)

Py = i (p' (1 — iys)u,(p) (5.164)

Since y,(1 —iys) = (1 +iys)y,, the latter y-matrix combinations used in
(5.164) can also be expressed as #P _ = #P . . For an antineutrino current, it
turns out that the analog of (5.164) is

PR IPY = — oreP)y,(1 + 75 )urs(P')- (5.165)

The projection operator P, in (5.165) again follows from (5.159), but the
reason for reversing the momentum in the spinors in (5.165) must await the
discussion of charge conjugation in Chapter 6.

Finally, note that even for g = (p' — p)*> # 0, we assume that (5.164)
and (5.165) do not develop anomalous magnetic-moment contributions or
form factors, because neutrinos interact only weakly with matter (Chapter
13). Such weak interaction experiments detect two types of neutrinos, asso-
ciated with electrons and muons, respectively.

Spin-3 Particles. It is also possible, and again useful, to construct a Dirac
bispinor wave function for a spin-3 free particle. In Section 2.E we built up a
spin-3 two-component spinor by the Clebsch-Gordan combination (2.62) of
a spin-1 polarization vector and a spin-} spinor, with the spin-1 combination
(1 x + =3 + 1) removed by the condition (2.63), 6; ¢; = 0. These rest-frame
statements can be expressed in bispinor language by using the Dirac-Pauli
representation and then boosting up to a general momentum frame with
p? = m? (recall —d;;— g, — p,p,/m?). This leads to the helicity sum
uP(p)= Y (13 X247 |30 (p)u*"(p), (5.166)

A4
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where such spin-3 covariant bispinors satisfy a free-particle Dirac equation
(Rarita and Schwinger 1941, Auvil and Brehm 1966)

(p — mu,(p)=0, (5.167)
with (2.63) replaced by (see Problem 5.11)
yu,(p) = 0. (5.168)
Given (5.167) and (5.168), u, automatically obeys the weaker conditions
(p? —m*Ju(p)=0,  p'u,(p)=0. (5.169)

A polarization or spin sum can then be formed from these spin-3 bispinors
in analogy with the spin-1 polarization sum (4.46) and the Dirac projection
operator (5.69). In the rest frame this projection operator is

PP = Z PP P* = 5, — 10,0, (5.170)
because (2.63) requires o; #;; = #,;0; = 0, a condition obviously satisfied by

(5.170), since 0,0, = 3. The normalization of (5.170) is chosen so that
P:; P« = Py Then the boosted version of (5.170) is (see Problem 5.11)

P = i u(p)a(p) (5.171a)
= - [(qu - %p—v)(]é + m)+ - : ( )(}5 m) (yv ") (5.171b)
= —[g,w -+ ;(vypv = Puhy) — p“pv] (2 + m). (5.171c)

m

As long as the particles are on mass shell, this scheme can be extended to
arbitrarily high spin [see e.g. Fronsdal (1958), Scadron (1968)].

There are, however, alternative formulations of spin-3 wave functions.
Moreover, for p? # m? or for wave equations involving interactions, ambi-
guities arise and such theories are no longer unique. In the context of lagran-
gian field theory, interactions involving massive particles with spin-3 and
higher (and sometimes even spin 1) are “nonrenormalizable” (see Chapter
15). Luckily, nature has been kind enough to see to it that most of the
fundamental particles detected so far have low spin.

General references on the Dirac equation are: Dirac (1958), Hamilton
(1959), Schweber (1961), Bjorken and Drell (1964), Muirhead (1965), Sak-
urai (1967), Pilkuhn (1967), Bethe and Jackiw (1968), Schiff (1968), Baym
(1969), Berestetskn et al. (1971), Jauch and Rohrlich (1976).



CHAPTER VI
THE KLEIN-GORDON EQUATION

Vi.1 DERIVATION AND COVARIANCE

The requirements which special relativity imposes upon quantum mechanics
are both fascinating and far-reaching! We begin our discussion of these effects by
considering the wave equation obeyed by particles of zero spin, examples of which
are provided by 7, K, n mesons, etc.

Relativistic Schrodinger Equation

We review first the heuristic “derivation” of the Schrodinger equation which
results from writing the standard non-relativistic relation between energy and mo-

mentum 2

p
E=— 1
o (1.1)
and making the correspondence between the energy-momentum four-vector p* =
(E,p) and the four-dimensional gradient operator 6*

ioh = i (%,_6) ~p=(EF) . (1.2)
We have then )
z—¢ = —2—624; (1.3)

which is the Schrédinger equation for a free particle. [Recall that if we make a

Lorentz transformation to a frame S’ moving with velocity vk with respect to frame
S, then

t—vz ) z—ut ' y
= —_— = =y . 1.4
“Vise (4
According to the chain rule
: 0 o 8 06z 8 ot 0z
o_ Y _ <4 Y =L 50 _ 2253
S == oo o: w0 ol
' 0 ot 8 0z 0 ot 0z
3__9 __Ot 0 0z 0  Olg 0z
A ik ri il i ra A T (1.5)
o't =o'
82=0" . >

! Much of our discussion in this section is based on corresponding material found
in Gordon Baym’s Lectures on Quantum Mechanics [Ba69).
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From the inverse Lorentz transformation

t' + v 2 4ot ,

e Tame T Y (9
find
e i ot _ oz 1 o _ 0z v .
&'~ 07 J1-g2 87 O -3 (1)
Hence
0 __ 3 , 3 _ 0 ' ’
go=0 20 g0 gi_g grogr (1)

V1 -2 ’ V1-7? ’

so that 0% is indeed a four-vector. Note that §, = (3%-, 5) does not have this

property. The minus sign in Eq. 1.2 is essential.]
Now consider how Eq. 1.3 might be modified by the strictures of special rela-
tivity, wherein the relation between energy and momentum is

E=y\m?2+3* . (1.9)

As a first guess, we might try the wave equation

=2

i%q/;: m—y . (1.10)

Seeing the square root with an operator inside is a bit peculiar, but this operation
is well-defined if we write ¢ as a Fourier transform

wa0 = [ T2, (111
’ (27)3 v ’
Then
3
zi«p('z',t): TP 72, /m2 4 5 ¢(B,t)
o (2 )3 (1.12)
2 3 ./ _—ip-3'
(27r)3 P2, /m? +p /dz e Y(E', 1) .
Interchanging orders of integration, this becomes
i%g&(i’,t): / Bz’ K(3,7 )@ 1) (1.13)

with

=7 = <27r)s P Cmt 45 (1.14)
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For large |Z — | most values of p except for those with p < lt__z"T will lead to rapid
oscillation of the exponential and consequently a very small value for the integral.
In fact, the integral will be sizable only for |z — z’| < %, but this leads to a severe
problem. Eq. 1.13 may be used via Taylor’s expansion to relate ¢(z,t+ 6t) to values
of ¢ (z' ~z + L,t)

Y(E,t+ 6t) = %(3, 1) + 6t6¢(z )

(1.15)
= ¢(Z,t) — ibt / &z’ K (2,2 )y(3't) .

This means that values of ¥ (Z + L, t) are affecting ¥ (Z,t + 6t) even though these
two spacetime points are outside the forward light cone, i.e., since 6t can be made

very small,

(6t2 - mi) <0 (1.16)

which violates causality. We must then abandon Eq. 1.10 as a possible relativistic
wave equation.
Klein-Gordon Equation

Next try squaring the energy, momentum relation, yielding

E*=p+m? . (1.17)

2 . e
—%(ﬁ(i",t) = (_V2 + m2) #(Z,t) (1.18)
or
(O +m?) ¢(Z,t)=0 (1.19)
where 52
=2
O= 57 \v/ (1.20)

is the D’Alembertian. We see that Eq. 1.19 is simply the wave equation with the
addition of a term involving m2. This differential equation is properly relativistic
and is called the Klein-Gordon equation.

That it is relativistically covariant can be seen by transforming from the original
frame S to a new frame S’. Since 8, is a four-vector—

O=9,0*=0,0" =00 (1.21)
—then according to an observer in S, the equation reads

(O + m?) ¢(&,t") =0 (1.22)
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which has the same form as in the original frame S. This covariance of the equation
is required by special relativity, since otherwise the form of the equation could be
used in order to determine how fast one is moving.

We first look for plane wave solutions of the Klein-Gordon equation, having
the form

#(Z,t) = exp (ip - T — iEt) = exp(—ip,z") . (1.23)
Since
2 =2 - =
0= W—V + m? ) exp (ip - £ — iEt)
(1.24)

= (_32 +5* +m?) exp (if - & — i)
we see that ¢(Z,t) does indeed satisfy the Klein-Gordon equation provided
E* =3 +m? (1.25)

which was our starting point. However, the wavefunction ¢(Z,t) depends not upon
E2, but rather upon E, which has the values

E=+\/p*+m? . (1.26)

The energy can be positive or negative, which was somewhat disconcerting to the
researchers first studying this equation. An additional problem was the inability to
construct a conserved probability density. For the Schrodinger equation one has a
probability density

p=9y*yY (1.27)
and probability current density
2 i o 7,/
i= 5 (vPe- (Yv) v) (1.28)
with the property that 5
7y +V.-5=0. (1.29)

This insures that

d 3 - - =
E/V dr——LJ-dS (130)

and says that any probability which flows out of the volume V' must pass through the
surface. Thus probability is locally conserved, which is also required in a relativistic
theory. (Simultaneous appearance and disappearance of probability at two spacelike
separated points in one frame would not be simultaneous in another and would thus
lead to trouble.)

It is easy to construct a conserved current density for the relativistic case via

= (0.7) = 5 (046 — (0#4°4)) . (1.31)
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We observe that

0u* = o 49T = 5 (8*4°) Bud + 4°'06 — (047) 6 = (8,9°)69)

- —i-(-m2¢"¢+m2¢‘¢) =0

2m

(1.32)

and since, 8,j* is a scalar, this local conservation holds in all frames. The problem
is that if we calculate j# for the plane wave solution ¢(Z,t) we find

[ p— —
7= (m’ m) T m (1.33)
whereby E

p=— (1.34)

can be either positive or negative, depending upon the sign of the energy. Such a
negative “probability” density is obviously unsatisfactory.

Another peculiar feature of the relativistic wave equation is that it is second
order in time, as opposed to the Schrodinger equation which is first order. This
difference is an important one. For the Schrédinger equation, this means that,
given the state vector |¢(0) > at time ¢ = 0, one can determine the state at all

future times, via _
¥(t)) = e=*#*|%(0)) - (1.35)

On the other hand, for the Klein-Gordon equation one requires two initial
conditions—both the wavefunction ¢(Z, 0) and its time derivative ¢(Z, 0).

These problems are resolved by the realization that a properly relativistic wave
equation involves of necessity both particle and antiparticle degrees of freedom.
If we identify the positive energy solution ¢gso(Z,t) with the particle, then the
corresponding antiparticle solution is constructed from the negative energy solution
via

¢antipa.rticle(5a t) = ¢E<o(5a t) . (1'36)

Then, for example, in the case of a plane wave
e 2 " I
@antiparticle(Z,t) = (e'p ""“'E") = =P -2-ilElt (1.37)
which corresponds to positive energy time development.

This identification is made secure by writing the Klein—-Gordon equation in the
presence of a vector potential A¥. Via the aforementioned minimal substitution

iV¥ — iV — eA¥ (1.38)

where e is the particle charge, the Klein—-Gordon equation becomes, for a particle
(positive energy) solution

(Vi +ieA,) (V¥ + ieA*) + m?) ¢Esa(E, 1) =0 . (1.39)
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Taking the complex conjugate equation for a negative energy solution, we find

((Vu +ieA,)" (V¥ +ied”)" + mz) $E<0(2,?)

= ((V“ —ieA,) (V¥ —ieA*) + m’) Bantipasticte (F, 1) = 0 (1.40)

which is the Klein-Gordon equation for a particle of opposite charge. The existence
of both particle and antiparticle degrees of freedom in the wavefunction is the reason
that one needs two boundary conditions at time ¢ = 0 in order to predict the future
behavior.

The antiparticle degrees of freedom also resolve the problem of the negative
“probability” density. Multiplying by the particle charge e, we identify

= 2‘_; (6"846 — (8"4°) ) (1.41)

as the electromagnetic current density. Then p is the charge density which is positive
(negative) for positive (negative) energy, i.e., particle (antiparticle) solutions, as
expected.

Returning to the plane wave solutions, we note that they are clearly Lorentz
invariant since p,z* is a Lorentz scalar. Thus an observer in the particle rest frame
(E = m, p = 0) writes the solution as e~*™*, while an observer in a frame moving

with velocity 7 = —vk with respect to the rest frame sees
p=_T | =k (1.42)
1-92 1-3

and writes the wave function as
eiﬁ'-l'—iE't' (143)

which is identical since p,z# has the same value in both frames.
The form of the current density is as expected since if we consider a region of
space d3z in the rest frame containing charge

dg = p(Z,t)d°z (1.44)
then in the primed frame the corresponding volume is

Bz =V1-32d% (1.45)

since the dimension of the volume in the direction of the boost is reduced by Lorentz
contraction. The same amount of charge must be contained in this contracted region
8o

dg = p'(#,t")dz . (1.46)
We find then et ’
FEY)__ 1 _E (1.47)

p(z,t) B \/iTi)3 T m
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Also, we expect the spatial current density to be given by

=/
U™ - - -
7@, ) = p(@ )= p(@ )

# (1.48)
- ;p(z, t) .
These anticipated behaviors are obviously satisfied by the form
. p*
b — P )
J e (1.49)

arising from the plane wave solution.
Two-Component Form

In order to deal with a more general class of solutions it is useful to write the
Klein—-Gordon equation in two-component form

X1 = % [¢+ % (6° +ieA°)¢]

] ; (1.50)
— a2 (80 o ;020
xa= 1 [¢ L (60 4 iea )¢] .
In terms of this notation the charge density becomes
i . . . "
p=5— 6" (0" +ied®) ¢ — ((6° - ieA®) ") ¢]
te . - . -
=5 [—im (x1 — x2) (1 + Xx2)" —im (1 — x2)* (x1 + x2)] (1.51)
=€ (|Xl|2 - |X2|2) . '
The components xi, x2 obey the coupled equations
. 1 = 2\ m
(10° —eA®) x1 = | 5— (—tV - eA) + 2| O +x2) + Z-(x1 = x2)
2m 2 2 (1.52)
1 - =\ 2 '
= o (—zV - eA) (x1 + x2) + mxa
.00 0 1 = \2 m m
(10° —eA’) xa = - | 5— (—zV—eA) + 5[ (1 +x2) + (X1 — x2)
am ;2 2 (1.53)
= —% (-zV - eA) (X1 + X2) — mx2

These results are displayed most conveniently by defining a two-component “spinor”

X = (X’) (1.54)
X2
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in terms of which the Klein-Gordon equation hass the form

L \2
(18° — eA%) x = [%n_ (—iV - eA) (13 + i) + m‘rs] X

0 1 0 —i 1 0
= ,To = , T
Y\1 o0 Z\i o 3lo -1

are the Pauli matrices. The charge density may be written as

where

p = ex'rsx

and the normalization condition becomes

(x|x) = /ds:c xfrsx = +1,

(1.55)

(1.56)

(1.57)

(1.58)

the sign being determined by whether we start with particles (+) or antiparticles

(=)

The Klein—-Gordon Hamiltonian
1 = 2 . 0
H= o (—zV - eﬁ) (s +im) + mrs+ €A
does not appear to be Hermitian since
(rs+ir) =m—in £ +in .
However, since the norm is defined using rs—cf. Eq. 1.58—we have
(X'|H|x) = /d“’z xV(z)rsHx(z)
and
i) = ([ @ax*E@min)
= /dsz x!(z)H'rsx'(2) = /dszxf(z)rs (rsH'rs) X'(2)
= <X|TsH7T3|X’>
The Hamiltonian is thus Hermitian provided
TsHt‘ra =H ,

and since ;
T3 (1’3 + i‘rz) T3=T3 (1'3 - iTz) T3
=n+in

this condition is satisfied.

(1.59)

(1.60)

(1.61)

(1.62)

(1.63)

(1.64)
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Now let’s take a look at the free particle solutions (A° = 0, A = 0) in terms of
this notation. A positive energy solution with momentum g and normalized to unit

density is given by
o) = | [Rer-im = [P e (1.65)

This can be written in two component form as

#(z) = xH(P) e~ * (1.66)
where E
Yo PR S i
xH(@) = T (m_E) . (1.67)

A corresponding negative energy solution

¢(z) = \/I%_le"”“w" (1.68)

has the two component form

xO)F) = —~ m=IEl) (1.69)
9/mIE| \ m + |E|

Of course, x(+)(p) is orthogonal to x(~)(p)

(XPEX@) = XD B)rax(F) = 0 (1.70)

and, by completeness, any wavepacket can be expanded in terms of a linear combi-
nation of positive and negative energy solutions. That is, we can write

¢(E,t) = / .(Td:_g.seiﬁ-i (a§+)(t)x(+)(§) + a%—)(t)x(')(_ij))

_ / d3p (a(+)(t) ) (F)e?? + o)) @ _'.M) (1.71)
—J (@n)s \'? X" '(\p)e ag ' )(B)e

Clearly then a§+)(t) is the amplitude to be in the positive charge, positive energy
state x(*)(P) while ai(,-)(t) is the amplitude to be in negative charge, negative energy
state x(~)(P). These amplitudes are given by

90 = [ &2 PO Frag(, 1)

(1.72)
a;-)(t) = —/d’z e P2y (N (B)rsd(3,1) .
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If the wavefunction is normalized to +1 we have

+1=(98) = [ P2 8@ Omé(E )

(1.73)
d3 2 v 2
= | @y CROEERCH
while the energy and momentum expectation values are given by
= ($1Hol#) = [ &2 613, 1)rsHod 5,1
» - (1.74)
(2,,1)23‘ [m? + 5 (I (+)(t)| + I - )(t)l )
= (¢l - i¥1¢) = / iz ¢f(s,t)r, ~ iV, 4(%,1)
(1.75)

/ (;i 1)’3p (la§+)(t)|2 + la§-)(t)l2)

PROBLEM VLI.1.1
The Free Klein—Gordon Particle in a Magnetic Field

Consider a free charged Klein-Gordon particle of mass m and charge e immersed
in a uniform magnetic field B in the z direction. Using the gauge

= 1.
A==-(Bx¥)
2
show that motion is quantized with energy

E,=+vm?+p2+eB(2n+1) n=0,1,2,..

PROBLEM VI.1.2
Pair Production by a Time Varying Electric Field

A rapidly varying electric field can lead to the creation of particle-antiparticle
pairs. Calculate to lowest order in a the probability per unit volume per unit time
of producing such pairs in the presence of an external electric field

E(t) = é;acoswt

and show that
Prob. = VT—(l -~ —)?ro(w - 2m)

Suggestion: Use as an interaction potential the usual form
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where

i .
= ;n‘(fﬁ au¢ —0¢ ¢)
A(t) = —é, ssinwt

Utilize normalized plane wave solutions of the Klein-Gordon equation

é(z) = \/_exp(zp . —4iEt) with E=1/p*+m?

and simple first order perturbation theory

3
Amp = —i / < J1Hm(@]0 > d
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So far everything seems quite reasonable. However, there exist at least a few

unexpected results within this formalism.

(2.1)

Zitterbewegung
Consider the construction of a wavepacket containing only positive energy com-
ponents.
b(3,8) = [ TP 82,01 D5
with

ag'l')(t) = e—iE,tf ((5 _ 50)2)
We choose some function f which is peaked about the origin, say
= _=\2
£(#-5)?) ~ Nexp -2
and consider the expectation value of the position operator
() = (4[216) = / &z (2, 1)7s36(2, 1)
dp’
d3z 7 (P -P)2 (+)* (+)
= [ [ a5 [ @ B2
x X @) rex ()

ip'.2

If we write Ze'?' 2 = —iﬁpfe and integrate by parts

@) =i / (;'T’)’sagﬂ‘(t)v,ag*)(t)

+i [ s ol X EHmIn ) -

(2.2)

(2.3)

(2.4)

(2.5)
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However,

- - 1 F 1 1 p [m+E
Vax(@) = o - A (
v mE, » \-1) 4,/mE3 E» \m-E,

=357 RANCT)

so that the term X(+)'(§)Ta§px(+)(5) vanishes by orthogonality. Then
20y = i [ P T o)
@) =i / 5 )sap ()¥5a$P()

= [aZs (Lo (6-50) +i26-50 £ (G-30") £ (- 7")

~ Po,
Ep,

(2.7
Thus the wave packet begins from the origin at ¢t = 0 and moves with uniform
velocity v = E‘Ef:’ as expected. Now consider the width of the packet. For simplicity

pick p = 0. Then

(E-97) = (o0) = - [ ),[‘”*(t)v a<+’<t)+4E4 aé”’(t)l] (2.8

which has two components. By dimensional analysis the first piece gives the ex-
pected result
d®p

(2m)3 7

where A is determined by the functional form of f(iz). The second piece is more
interesting, yielding

(+)"'(t)V2 (+)(t) ~ = (2.9)

(g:rl); 4pE4 l gsﬁk)(t)l2 ~ #K (%) : (2.10)

where K is a function depending on the specific form of a(+)(t). We see that even
if A is very large so that the first component of the width is very small, there is
still a contribution 6z ~ % of order the Compton wavelength of the particle. This
represents a minimum width of the wavepacket and cannot be made smaller so long
as only positive energy components are present.

We may explore this point further by attempting to construct a wavepacket
localized at the origin

6(3,t = 0) = 6%(z) ( g ) 2.11)
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where p, o are arbitrary numbers. We find then

a{P(t) = e=5r* (Ep + m)p + (Ep — m)o]

1
2\/?1337[

<y . 1 (2.12)
az ' (t) = —e'"r aJ/mE, (Ep —m)p + (Ep + m)a] ,

so that a(')(t) # 0. That is, if one wishes to localize a wavepacket within a distance
smaller than a Compton wavelength negative energy components are required.

Such negative energy components arise naturally in another way as well. Sup-
pose we start with a positive-energy-only wavepacket and apply the position oper-
ator #. Then, as shown earlier

$p
26(Z,1) = 3 / ﬁem-aagﬂ(ﬂx(ﬂ@)

B, (2.13)
_. [ F i S (F) ) _ () () B o)
=if (21r)se”["(+)(‘”)vﬁaﬁ+ O =X zgzes" (t)] |

so that the position operator introduces a negative energy piece into the wavefunc-
tion even if there was none present originally. Equivalently, multiplication by the
potential energy eA°(Z) introduces such negative energy states, so that whenever a
wavepacket interacts with a potential we should not be surprised to find negative
energy states appearing.

This mixture of positive and negative energy components in the wavepacket
has an interesting consequence if we evaluate the expectation value of the position
operator

i) = [ oz Lo (l8Pof +[500])

Ep_ B (Hep40)
— Re /W E—p?ap (t)ap (t) .

(2.14)

The first component represents just the expected uniform velocity motion of the
packet. However, the second piece is mare interesting. Since

a{P" (1)) (1) ~ e¥IEnlt (2.15)

this term represents a rapid—w > 2m—wiggling of the position of the particle
about its central location due to the interference of positive and negative energy
components. This rapid movement—called zitterbewegung or jitter motion—is the
price one pays for localization with 635#, or for interaction with a potential.
In the latter case, since positive and negative energies correspond to positive and
negative charges, the particle and antiparticle components of the wavepacket travel
in opposite directions. Thus the interference damps out after a time At ~ # once
interaction with the potential has ceased. An exception is when the potential is
very strong—V — E' > m. This problem is called Klein’s paradox for reasons which
will become apparent.
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Klein’s Paradox

Imagine a Klein-Gordon particle of mass m, charge e, and energy E =
v/ P?* + m? incident from the left upon a potential step

V(z) = Vob(z) = eA%(z) (2.16)

located at the origin, as shown in Figure VI.1. Since the potential

V(x)

Vo

Fig. VI 1: Step potential used for the discussion of the Klein paradoz.

is constant, the solutions can be represented in terms of plane waves. We look for
stationary state solutions

4(z) {ae“"+be‘”" z<0 k=vVE? —m?
) =

. 2.17
ce'’® >0 g=\(F-V)?-m? . (217)

These are seen to be solutions of the Klein-Gordon equation in the regions =z > 0,
z < 0, respectively. Now, as usual, match the wavefunction and its first spatial
derivative at the origin, yielding

¢(0")=c=a+b=¢(0")

2.1
¢'(0+) =1igc = tk(a — b) = ¢'(07) (2.18)
whose solution is . b1 %
c —
=T+’ a- 17§ (219)
The transmission and reflection coefficients are calculated as
_1q |s|’ _41 1
T= Elal =% |1+1|2
k (2.20)
b2 (14 '

If the kinetic energy E — m is above the height of the barrier—E — m > Vp—then
k,q are both real and positive, yielding

T4 R—(u)2 R+T=1 (2.21)
= =(rq) =1. .
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Thus the incident beam is partly reflected and partly transmitted, as expected from
our experience in the corresponding non-relativistic problem. On the other hand, if
the incident kinetic energy is less than the height of the barrier, but |V — E| < m
we see that ¢ is imaginary. Then

R=1, T=0, R+T=1 (2.22)

which again agrees with the non-relativistic analog.

Suppose, however, that there exists a very strong potential—Vy > E + m. In
this case ¢ becomes real again but negative. Then

n |q|)’ 4k]q]
R=(-—— >1 , T=—-or-—-"-—-<0 2.23
pyyp = laD? (2.23)

but
R+T=1. (2.24)

Probability is still conserved, but only at the cost of a negative transmission coeffi-
cient and a reflection coefficient which exceeds unity. This is the paradoxical result
which confronted Klein and others.

In light of our present knowledge there exists no paradox. In the case that
Vo—E>m (2.25)

the potential is sufficiently strong to create particle-antiparticle pairs. The antipar-
ticles are attracted by the potential and create a negatively charged current moving
to the right. This is the origin of the negative transmission coefficient. The parti-
cles, on the other hand, are reflected from the barrier and combine with the incident
particle beam (which is completely reflected) leading to a positively charged cur-
rent, moving to the left and with magnitude greater than that of the incident beam.
Thus R > 1, as found.

Another way of thinking of this is in terms of what happens to the energy
spectrum of the Klein—-Gordon equation when a potential V' > 0 is turned on adi-
abatically [Sa 67). When V = 0 this spectrum ranges from m < E < oo and
—00 < F < —m. Now consider a positive energy solution as shown in Figure VI.2.
As V is increased from zero, this energy level first finds itself in the forbidden re-
gion where solutions are strongly damped. However, when E < V —m we are again
in a region of oscillatory solutions. From Figure VI.2 it is clear that even though
E > 0 this is essentially an antiparticle solution. The tunneling from region I to
region III should be considered a transition from a particle state (when V = 0) to
an antiparticle state (when V' > E + m) as described above.
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Fig. VI.2 Klein-Gordon energy levels in the presence of a potential.

There is no mystery then. Any problems which arise come from attempting
to apply a simple single-particle wavefunction picture to what is obviously a many-
body situation. The correct way in which to handle all the subtlety of this problem
is via the formalism of quantum field theory. Nevertheless, the elementary wave-
function paradigm allows an accurate sketch of the physics involved.

VI.3 THE COULOMB SOLUTION: MESONIC ATOMS

The Coulomb bound state problem can also straightforwardly analyzed. Before
looking at the exact solution, however, it is useful to make the connection with the
Schrodinger formalism by deriving an effective Hamiltonian for the situation that
the Klein-Gordon particle is non-relativistic.

Effective Schrédinger Equation

Consider the two component formalism—Y;, xo—and look for a stationary

state solution with
0%~ (m+ W)y 5=1,2 (3.1)

where W << m. Then

1 5 1 . -
(m+ W = ebpa = (mot o= o)) + =P eB

] . 1 . (3.2)
(m+W—ed)xs = - (m + %(5 - BA)2> X2 = %(f? —eA)?x; .
Solving the second equation for x; we find
1 1 - - 2
X2 = Tom+ W —ed %(P-CA) X1
(3.3)

~ 1 W—e¢ - "‘2
o (1— . )(p—eA)xl.
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Substitution into the top equation yields

W = et = g5 eBxs - s eB)? (1= L) - ey (39

W(l—

or

1 . -
16m4 (p - eA)4) X1

p—eA)? p—eA)? e
=(.(_p_2_mﬁ_+e¢_(p873)_ (5 - )2 ¢4(p A)z) . (3.5)

However, x; is not normalized to unity. Rather
p—eA)t
1= /d% (XIXI —x;xz) =] /dszx'{ (1 - (plﬁ_m“)—) X1
~ / 43z x,' x4
where we have defined .
p—eA)t

Thus multiply Eq. 3.5 by the factor (1 + %L‘), yielding

(3.6)

Gocd)? ool 1 . ey . -
Wi = (( 2m ) - ( 8m3) - 16m4(p—eA)2e¢(p—eA)2

- eA)t —eA)t
+( (A’ 4))e¢( (- cdy ))x1+---

_ [(B-eA)? _ (B -eh) Vo [s_ o ave [z .32 '
- ( 2m Bms T 0t Som (R ’[(’"eA) o8] )X -
(3.8)
The effective Schrodinger Hamiltonian is then
H= —(—zV —eA)? - 1 —iV — eA)t + e¢
. (3.9
—i¥ - eA)’, [(—iV — eA)?, e¢]]
and we can identify its various components as follows:
a) The terms
(B —ed)?
om +ed (3.10)

represent the usual non-relativistic energy.
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b) Relativistically the kinetic energy is

T=y\/m*+(F-cd)—m (3.11)
whose non-relativistic approximation is

P—eA)? (P—eAd)
r=@-cA) Bl (3.12)

Thus the piece —giy(P — eA)* represents a relativistic O (%;-) correction to
the usual kinetic energy.

¢) The origin of the double commutator term is more subtle and is associated with
the zitterbewegung motion discussed earlier. By completeness we can expand
a bound state solution in terms of plane wave solutions. This expansion will
involve, in general, a combination of positive and negative energy solutions and
will thus lead to zitterbewegung motion of magnitude (6z)% ~ mﬂl- about the
usual trajectory. This leads, in general, to a shift in the energy of magnitude

\

V(e +62) - V(z) ~ ViV (z) (62i) + %V.-V,-V(z) (62i2;) + ..
o ! (3.13)

In the case of spin-1/2 we shall see that a term of precisely this form—the
Darwin term—appears in the effective Hamiltonian. For the case of spinless

particles the zitterbewegung term arises, however, in O (%:—)

Mesonic Atoms

A spin-zero “atom” actually exists in nature when a #~ or K~ meson is cap-
tured by a nucleus. This object is called a “pionic” or “kaonic” atom. We can
calculate the energy levels of such a system approximately by treating the 7* term
as a perturbation. In lowest order we have

Hy= 222 (3.14)

which is simply hydrogen-like atomic Hamiltonian, yielding eigenvalues

AL

Bn=- 2n?

m (3.15)
and eigenfunctions ¥, (¥) with

=2
H0¢n(?) = ('p_ - ?) ¢n(F) = En¢n(F) (316)

2m
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Then » )
1 Za
p_sd)n(r) =c—|En+— 1/)"(1‘)
8m 2m r
(3.17)
_ 1 [ 2% Z%° + Z2q? Ya(r)
“m \"" Ins n2r r2 nir
Since . 7 . 2102
L —— LI W L
(entt (B)owlidy o
we find
B\ _ 1 [ ;2% ,Z%* +mi 2t
8m3 / ~ 2m 4n nt nd(£+3) (3.19)
_mZ%t( 1 3 '
T3 \£+1 4n
Also, we note that
[7.4(9)] = ~zes*(r) . (3.20)

Then

(vl [, [ 6]] 10m) = Ze [ 63r) ((9°902()) n(r) = 309" ¥ (r)) = 0

(3.21)
so the Darwin term does not contribute.
The energy levels become
Z2a? Z%a? n 3
Enl =-m 211,2 [1 + n2 (m - Z) +.. ] . (322)

We observe that the * term acts as a fine structure term, removing the £ degen-
eracy of the hydrogen atom and lowering the energy for states of smaller angular
momentum.

We can also solve this system exactly. Using

Za

e¢(r) = —_r— (3.23)
the Klein—-Gordon equation becomes
Za 2 =2 2 -
E+ e +V —m* | ¢Y(F)=0 . (3.24)

If we look for solutions having a definite angular momentum £

¥(F) = e(r)Y"(F) . (3.25)
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we require

Za\? 1 8%  f(t+1
((E+_rg) trae (:2- )—mz)d)t(r)

| 5 . ) 3 (3.26)
ZaE Li+1)- 2%
= (E’-m’+2 R )«Mr):o .
Then making the identification
LL+1)—-Z2 =£(f +1)
E?—m?=k=2m'E (3.27)
E=m'
Eq. 3.26 becomes
1 52 g +1) 2m'Za ,, _
(; 7 Li— + - +k ) Y(r)=0 (3.28)

which is identical to the differential equation which arises in the usual Schrédinger
equation solution of the hydrogen atom, except that in the present case £ is not
an integer. It is necessary then to analytically continue the hydrogen solutions in
order to apply them here. We have

Z%a?
E,=- 557 m’ (3.29)
and m
E = . (3.30)
(1+ 2"
However, s is not an integer but is defined rather in terms of £/ 1—
s=n+f-1¢ , (3.31)
with ¢ determined by
, 1 1\’ 2 2, 1
4( +1)+Z= z'+-2- ={l+1)- 2% +3
i.e.
1 1\’
= —E + (l+ -2-) —-22a2 (3.32)

t The positive sign in front of #/ —£ is determined by the hydrogen atom condition
that n — £ is a non-negative integer.
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Although mathematically either sign is allowed, only the positive sign allows a
normalizable solution as & — 0. Then

ot
s—n—5—8+\v (£+§) - 2%a (3.33)
so that
-1/2
Zz 2
E=m|l+ = ~ 2 (3.34)
(n—l—%+\/(l+%)2—22a’)
Noting that 2 g
1 Z%a
8~n—'2'e+% (3°35)
we find
Ex l_lzzcv2 ?_Z‘a"
~Am 2 82 +8 34 + ...

(3.36)

~m(1_lZ2a2(l+Z2a2( n _3))
- 2 n? n2 \t+1 4/)°"

which is in complete agreement with Eq. 3.22 obtained perturbatively.
In comparing this prediction to experimental data on pionic atoms, various
corrections are required:

i) the reduced mass
mM

m+M

must be utilized in place of the pion mass m;

u= (3.37)

ii) account must be taken of the fact that the central nucleus is not a point charge
but has a radius R ~ 1.2 x A¥fm;

iil) correction must be made for the so-called vacuum polarization, wherein a vir-
tual photon, responsible for the Coulomb potential between pion and nucleus,
transforms temporarily into an electron—positron pair;

iv) finally, since the radius of the lowest Bohr orbit

_ 1
= Zam,

Tx

(3.38)

is my /m, ~ 300 times smaller than the corresponding electron Bohr radius, the
pion wavefunction has significant overlap with the central nucleus, requiring a
correction factor for the strong pion-nuclear interaction.

When these modifications are made, agreement is excellent over a wide range of
nuclei.
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PROBLEM VI.3.1
Relativistic Zeeman Effect

Suppose a pionic atom is placed in a uniform magnetic field, described by the
vector potential

Z:-zl-(éx?) .

i) Neglecting the quadratic term (justify this) show that this problem can be
exactly solved to yield the energy levels

E = FEp-o(1 - 2le)§
My

where wy = eB/2m, is the Larmor frequency and m is the eigenvalue of L
along the direction of the magnetic field.

ii) Evaluate the nonrelativistic limit of the Klein-Gordon equation in this case and
show that the effective Hamiltonian is

- P’
’rL~B(1—2m’2r +...)

€

H=HB=0_2

Thus the usual Bohr magneton e/2m, is reduced by relativistic effects to

=2
p

e
2m,

iii) Calculate the energy shift induced by the magnetic field using perturbation
theory and show that this result agrees with the exact answer to first order in
B.

PROBLEM VI1.3.2
High Z Mesonic Atoms

We have seen that the energy levels of a mesonic atom are given by

-3
2

VAL
o= t- b1 s D= 2

i) Show that the ground state energy for any mesonic atom heavier that Z=69 is
complex. Explain what this complex energy means.

ii) Mesonic atoms have been well studied at places like Los Alamos and it has
been found that the ground states of atoms as heavy as lead (Z=82) or Uranium
(Z=92) are quite stable. How do you reconcile this fact with the result obtained
above? Be as quantitative as you can.

E=m|l+



CHAPTER Vil
THE DIRAC EQUATION

VIl.1 DERIVATION AND COVARIANCE

Historically the Klein—-Gordon equation was written down before the Dirac
equation. However, it was abandoned for a period of time due to the problems with
negative energy states and the inability to construct a positive definite probabil-
ity density. Dirac then developed his formalism and demonstrated the connection
between negative energy states and antiparticles, at which point the Klein—-Gordon
equation was resurrected. It is in this spirit then that we interrupt our discussion
of the Klein—-Gordon equation to present the Dirac equation.

Intuitive Derivation

Consider the Schrodinger equation which describes a spin-1/2 particle in the
presence of an electromagnetic field. The wavefunction ¥(Z,t) is a two-component

object .
¢1(z’t)) (1.1)

Vg1 = (¢2(E,t)

describing a particle with spin
S= <1/)

In addition to the pieces of the Hamiltonian

p-3)

2m

%3A¢> . (1.2)

H~ +e¢ (1.3)
expected from the spinless case, we must also append a term which accounts for
the interaction of the magnetic moment with a magnetic field. Recalling that for
an electron the moment is given by

j=223 (1.4)

2m

with gyromagnetic ratio g. = 2 Bohr magnetons, this leads to an additional term
in the Hamiltonian

S-B

.B=-=
m (1.5)

c_. -
=~5m° B

so that the Schrodinger equation becomes

H =~

)

1 /. +\2 R » N .
(En— (p—eA) +e¢—;2%a-VxA)¢(z,t)=1a¢(l‘,t) : (1.6)
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Using the identity
oi0; = 6,'_,' -+ ie.-,-ka;, (1.7)

we note that
7 (;s-ez)a‘- (p'-e}i) = (5-e,71) . (5_3;1) +iF - (is-e.Z) x (i‘;—e}i)

= (ﬁ—eﬁ)z—eb‘-exz
(1.8)

where p denotes the operator —iV. Thus we may write the Schrodinger equation
in the suggestive form

(%n-a-(i‘:—eﬁ)a-(ﬁ—eﬁ) +e¢)¢=i%¢ : (1.9)

Defining the four-vector
Ty =1V, —eA, (1.10)

we can write the previously discussed wave equations as

Non-Relativistic Spin 0 %n-?r T = my
Relativistic Spin 0 (-7 F-—m?)y=
Non-Relativistic Spin % %n-b"- 70 -TY = my

and from this tabulation we might well guess that the relativistic version of the
spin-1/2 equation would take the form

(- -7 -F—m?)yp=0 . (1.11)

In fact this is almost but not quite right. Rather the correct form of the Dirac
equation is given by [Fe 62]

(mo—3 -®)(mo+7 %) —m?) =0 (1.12)

where here 9 is a two-component spinor. [Note that if 7o, # were simply numbers
and not operators we would have

1.13
=n2 -7 . (1.13)

However, this is not in general the case.]
Eq. 1.12, while correct, is not the conventional form of the Dirac equation.
Instead Dirac chose to write his equation in Hamiltonian form—i.e., first order in

time. As we saw in the case of the Klein-Gordon equation, this requires a doubling
of the number of components. We must deal with a four component spinor —
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two components for particles, two for antiparticles. We define then a pair of two
component objects p, x such that

(mo+ - 7)p=my

1.14
(mo—G-F)x=mp (1.14)

Eq. 1.14 is an equivalent version of Eq. 1.12, but is still not the standard form of
the Dirac equation. Instead the conventional version is found via use of the linear
combinations

Ya=X+p, ULv=Xx-p (1.15)

which satisfy
ToYa — G - TPy = My,

3 Fiba — Moty = my . (1.16)

Eq. 1.16 can be represented most succinctly by employing a four component object

_(¥a
b= (%) (1.17)

and the 4 x 4 matrices

1 | 0
P=l—- = | — — (1.18a)
0 | -1
0 | @
¥y=1- — | = - (1.18b)
-7 | 0
in terms of which we can write
(P’m-F-F)y=my . (1.19)
[Check:
- o o -0 7 1/)
(7°7ro—7-7r)¢=(~ 7 )( )
o-% - e
(1.20)

Ya
_m(%) =my

which agrees with the coupled equations in Eq. 1.16.]
This is the conventional form of the Dirac equation and is usually written as

(Hru—m)¥=0 . (1.21)
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Often in the literature one finds this result expressed via a shorthand notation due
to Feynman wherein an arbitrary four vector A¥ contracted with the Dirac matrices
v* is denoted by using a slash through the four-vector

At =4 . (1.22)
Then the Dirac equation assumes the simple form
(f-m)y=(V-ed-m¢=0. (1.23)

It is useful at this point to identify certain properties of the 4# matrices which
we shall later exploit. We note

1 0 0 -7
ot _ =4, 3= =-5 . 1.24
¥ (0 _1) ¥ ¥ (a 0) 3 (1.24)

12 0 . - 0
(7°)2=(0 (_1)2)=1, (7)’=(0 _a?>=-1. (1.25)

Since any two different 4’s anticommute

. 0 o 0 -0
03 i,.,0
+9'9° = + =
7+ (a'_ 0) (—a; 0 )

Also

(1.26)
. - —0i0j — 0;0; 0 )
7Y+ = =0 if i#j
0 —0i0j — 00§
we can represent Egs. 1.25, 1.26 in terms of the relation
Y+ = 29" (1.27)
where
1 0 0 O
w B 0 -1 0 O (1.28)
TEW e 0 -1 0 '
0 0 0 -1

is the metric tensor.
Hamiltonian Form
It is important to note that Dirac’s original presentation of the relativistic

equation was somewhat different than given above and was written in Hamiltonian
form
d¢

i = Hov . (1.29)
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We can reproduce this version by noting that since (y°)? =1

P t=(Pm—7 %) =m —9°7 -7 . (1.30)
Thus Eq. 1.23 becomes
(m—7"3-F—7"m)y=0 . (1.31)
Dirac’s notation was to define
=" a=1+"% (1.32)
so that
iz¥= (& (5-ed) +eo+pm) v (133
= Hpvy
Here

(1 0 d_'_10 0 7\ (o0 @ L34
ﬁ_(o —1) o a_(o —1>(—a o)_(a 0) (1.34)

so that 81 = 3 and &' = @— Dirac’s Hamiltonian Hp, is explicitly Hermitian.
Covariance

The crucial issue, of course, is the covariance of the equation — does it have
an identical form in all Lorentz frames? That is, if in one frame the Dirac equation
is written

(7u (iV¥* — eA¥(z)) —m) ¥(z) = 0 (1.35)
does it in some other frame read
(7 (iv*' - eA"'(z')) - m) V(z') =0 (1.36)
where
z'* = a¥, 2" (1.37)

is the point into which z transforms and, since A*¥, V# are also four vectors
At =ah A | Vk = ah V¥ . (1.38)

Although the Dirac matrices y# are written with Greek indices, they are not four
vectors. Rather, they have the same value in every frame. On the other hand, the
Dirac spinor 9 does change under a Lorentz transformation

¥(z) — ¢'(z') = S(a)¥(2) (1.39)

where S represents an as yet underdetermined matrix function of a#,. One should
not be surprised that the spinor undergoes such a change. Indeed even in the case
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of a non-relativistic two-component spinor, there exists such an effect. For example,
under a rotation by angle §¢ about an axis specified by 7, we have

z)= V(=) — ¢/(z') = ex iisié"-fl ('pl(z))
W )—(iﬁz(l‘)) vie)= p( 2 ) ¥a(z)

oo e (23)] (3

where I = 7 x p is the orbital angular momentum operator.
Similarly in the relativistic case we seek an operator S(a) such that ¢'(z’) =

S(a)y(z) and

(1.40)

(749" — m) S(a)(z) = (yuia", V* — m) S(a)(z) = 0 (1.41)
If we multiply on the left by $~1(a), yielding
(S~1(a)7uS(a)a",iV¥ —m) y(z) =0 . (1.42)

then in order to reproduce the original form of the Dirac equation, it is required
that

S~Ya)y,S(a)a”, = v, . (1.43)

Noting that the covariant component of a four-vector must transform as
zy =zx(a" 1)}, (1.44)

in order that

ziz" = z)(a"t)? x a%z¢ = zx 6%z = 2\2* (1.45)

we see that Eq. 1.43 can be written in the alternate form
7(a1)% = 571 (a),5(a) a4 (1) = S~ (a)12S(a) (1.46)
or in terms of its contravariant version
S~Y(a)y*S(a) = aty¥ . (1.47)

Rather than present a detailed derivation, we shall merely quote the appropriate
forms for S(a):
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i) Rotations:
Consider a rotation by angle ¢ about the z-axis, with

z! =gzl cos ¢ + z2sin ¢
z? = —zlsin ¢+ z%cos ¢
o s (1.48)
29 =20
Then o s 6
_ ! —cos 2 12 @
S—exp( 2772) cos o — 7y sin g
) ) ) (1.49)
-1 _ $.1.2) = het 1.2 6in =
S —exp(27‘y) cos2+'y')'snn2
Check:
S71498 =45"18=4° since [y'9%,7°] =0
(1.50)
S92 =9%5"15 =" since [y19%,7%] =0 .
On the other hand, since {y!9%,9'} =0 i=1,2
S-1y18 =41(5)2 = 4! (cos2 $_ sin® ¢ _ 2sin ¢ cos 2'yl-)'z)
2 2 2 2
= cos ¢7! + sin 72 (1.51a)
S~ 1428 = 7%(8)% = 2 (cos2 ¢ _ sin? $_ 2sin ¢ cos £7172
2 2 2 2
= cos ¢7> — singy! . (1.51b)
Note also that '
(r'7%) =P =11y (1.52)
so that
St=s5"1. (1.53)
Since under rotations d3z’ = d3z and
Yy =ylS-1Sy =yly (1.54)

we see that the normalization [ d3z 'y is preserved.

ii) Lorentz Boost:
Consider a Lorentz transformation with velocity v along the z-axis, with

:clo = cosh #z° — sinh 6z°
z'3 = cosh fz3 — sinh 6z°
. (1.55)
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where we have defined

v

coshf = = and sinhf = (1.56)
1-v 1-v
[Note ,
1 v
29 _12p _ =1 . .
cosh® @ — sinh“ 0 ik g 1] (1.57)
Th
o 6 5, 0 4o..0
.S':exp-2-737 =cosh§+7 ~ smh-2-
p o p (1.58)
-1 _ _Y. 8.0 _ Y 3. 0inh L
S™" =exp 577 cosh2 7Y s1nh2
Check: Since [v39%,7}] =0 i=1,2
5—1715 - 715—15 - 71
-1.2¢_ . 2¢-1¢_ .2 (1.59)
STy S=9°S""S=9* .
Since {7%1%,4'} =0 i=0,3
S~1408 =4%(5)2 =4° (cosh2 g + sinh? -:— + 2cosh -:-sinh -:-7370)
= 7% cosh® — 43sinh @ (1.60a)
S-ly38 =38 =" (coshz g + sinh? -g— + 2 cosh -g-sinh gya7°)
= 73 cosh @ — 7% sinh § (1.60b)
Note also that '
(*7°) =" =" =% (1.61)
so that
st=5. (1.62)
Then
Wy = 9815y = y1(8)’y £ ¥Ty (1.63)

so that the normalization is not preserved. However, we should ezpect a change to
occur since because of Lorentz contraction d®z’ # d3z. Rather we should have

Yy ds = gty d®s (1.64)

which does not require unitarity of S.
We have shown then via i) and ii) that for arbitrary rotations and boosts it is

possible to construct an operator S such that the Dirac equation is covariant. For
later use we note that covariance can also be verified under a rather different kind
of transformation:
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ili) Spatial Inversion: (i.e., Parity Transformation)

with o ;
£TE. (1.65)
T = =2
Then
S=81=8t=4". (1.66)
Check: g-10g 0g-1g o
Y= =7 (1.67)

S35 = —35-15= -5 .
Of course, Y'ty’ = ¢t St Sy = Yl so that the normalization is preserved.
Conserved Current Density

There exists one additional requirement on S — that we be able to construct
a properly conserved probability current density—j* = (p, j) —satisfying

VFju=o+V.7=0 . (1.68)
in all frames. For the probability density we expect

p=vly (1.69)

which is properly non-negative. However, does there exist a corresponding 77 In
order to answer this question we note that

vt (%”+ (iaﬁ-ﬂm) ¢) -
ot (1.70)
(—zW-HN (— ”-$—ﬂm))¢=0
Subtracting, we find
t -
i(¢'%‘”+‘%¢) +ivt (a-F+a-F)y=0
8 (1.71)
=i (ww +V -¢*a¢) :
whereby we identify .
j=vlay . (1.72)

In order that the conservation equation

V,i* = (1.73)
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be Lorentz invariant and thus valid in an arbitrary frame, it is necessary that the
four-current density

i* = (v, ytay) (1.74)

transform as a four-vector. It is conventional to express the current density not in
terms of ¥! but rather in terms of

v=yty® . (1.75)

Then

* =Py . (1.76)

which in a new frame becomes

§'* = STy y# Sy = ¢t (v°)? Sty 44 Sy

- 1.77
= 1Sy’ y*Sy . (1)
Since we already know that ’
SlakS =4 ¥ (1.78)
the current density ¥y*#y will be a four-vector provided
OSty0 =51 | (1.79)
This requirement is easily verified:
i) Rotations: [v%,7'y] =0 1i,j=1,2,3
Then
510 =8st=6"1 | (1.80)
ii) Boosts: {7°,7%y'} =0 i=1,2,3
Then
0Sty0 = 40840 =571 . (1.81)
iii) Spatial Inversion: Then
08ty0 =g-1 | (1.82)
We have in general
* =Py — Py rg =ahjt =, (1.83)
so that, as required,
0=VHj, — V¥ =0 (1.84)

i.e., current conservation obtains in all frames. Eq. 1.84 guarentees that the nor-
malization is preserved in time. Thus

d - -
—/dszpz—/ d3:cV-j=—/ 7-dS (1.85)
dt Vol Surf
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where we have used Gauss’ theorem. For a localized wavefunction the current
density j vanishes on a sufficiently large surface and we find

d < J—
d_t/d zp=0 qed (1.86)
Since
p=yty (1.87)

is non-negative we shall for the moment be able to interpret 1 in terms of a single
particle wavefunction with p as the probability density. Later on we shall find that
at least some of the same problems which plagued the Klein-Gordon equation occur
in the Dirac case. The ultimate solution to these difficulties is quantization of the
Dirac field. For now, however, we proceed with the single particle wavefunction
interpretation.

Vil.2 BILINEAR FORMS

We have seen that although the 4# are constant matrices which have the same
value in all frames, the bilinear quantity

i* =9y (2.1)
transforms as a four-vector—under a Lorentz transformation
zh — z'# = ok ¥ (2.2)

we find l
H#—jt=a"j" (2.3)

Completeness

Since 9, ¥ are simply four-component row, column vectors, a bilinear
0y (2.4)

can be always decomposed into a combination of 4 x 4 = 16 linearly independent
matrices. Defining

0 (5] —idl 0 0 -1
= _ja0la248 — _; = 2.5
15 ==Y (71 0)( 0 _wl) (_1 0) (2.5)

and the antisymmetric tensor

ohV = %(7“7" - 7'v*) (2.6)

0i . 0 g .. Ok 0 (2°7)
o =i o¥ = €k
o; 0 0 o

with



290 VIl THE DIRAC EQUATION

we may choose these sixteen matrices to be
1 ¥ o Yy s (2.8)

There exist four 4#’s, four ¥#vs’s, one unit operator and one 95 matrix. The 4 x 4
matrices o#¥ are antisymmetric in 4, v. Since an antisymmetric 4 x 4 matrix must

have the structure
0 ¢ ¢c; Cs

—C 0 c c
Av |l v (2.9)
—cg —c4 0 9cg
—cg —c5 —cg O
we see that there exist only six independent elements. Thus the total number of
linearly independent matrices is found to be
1 7 i 775 s
1 + 4 + 6 + 4 + 1 = 16
as required.

Transformation Properties

All Dirac matrices are simply constants and have the same value in all Lorentz
frames. However, when contracted with ¢,y different bilinears have their own
distinct transformation properties and we study each in turn:

1 gy — ($181) 7Sy = ¢1°(1°S1Y°)Sy = 9SSy =¥y . (2.10)
Thus ¥4 is a Lorentz scalar, transforming into itself under boosts, rotations and
spatial inversions.

Before looking at 95 we note that since the matrix is a product of the four
Dirac matrices, it must correspondingly anticommute with any of these—

{7,7*} =0 (2.11)
—so that
v Y1y — 9IST 5P = 4ly° (705"°) 1Sy = 9SSy . (212)
Since 75 anticommutes with any single 9#, it must commute with a product
[15,7*7"]=0 . (2.13)

Thus for rotations and/or boosts

Y159 —> P15571SY = dysy (2.14)

Boost
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but under spatial inversion
PrY —> —P157 IS¢ = —Pe¢ . (2.15)

The bilinear ¥yst then transforms as a pseudoscalar.

Classical physics examples of scalar and pseudoscalar quantities are charge
(scalar) and “magnetic charge” (pseudoscalar)—if it exists! In order to see this,
note that an ordinary four-vector such as z* = (t,Z) has the behavior under a

spatial inversion
# = (t,%) -’ (t,-%) ==z, (2.16)

Since A¥ itself is a four-vector then

A* = (¢, A) - (4, ~A) =4, . (2.17)

This means, however, that

- . 0A - 8 - -
B=-%¢-22 . _(-V)¢- L(-A)=-F

.. ¢_ ot P ( z¢ Qt( ) (2.18)
B=Vxi—(-9)x(-4)=B

so that E and B behave oppositely under spatial inversion. Consider the electric
field from a point charge. Since

2 q . qp o
E=41rr2r > 47rr2(_r)=_E (2.19)

we see that gp (the electric charge in the inverted frame) must be the same as ¢—¢
is a scalar. However, if a magnetic monopole were to exist, with magnetic charge g

D g ~ gP ~ =
B = r—zr ? -'3(—1') = +B (220)

which requires that
g=-gp (2.21)

i.e., magnetic charge is a pseudoscalar quantity. ~
Now consider the transformation properties of ¥, Yy yse.

™ Y o WSSy = ¢y (5°5T) v Sy
boost _ _ _ (2'22)
=957y = iy y =yt

so that ¢y#¢ transforms as a Lorentz four-vector. Also, under a spatial inversion
we note that

Py — 9 =y . (2.23)
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Thus ¢y#+ transforms under parity in the same manner as z¥ = (¢, %) and is a
four-vector or polar vector.
If, however, we consider Yy*ys¢

Thrs: s — YISTY Sy = ¥1y° (1°51°) v s Sy
boost . (2.24)
= S~ 4  Systh = Py Hysy
but B _ _
P Y — 91 s’ =~y (2.25)

Thus under ordinary Lorentz transformations (rotations/boosts) this quantity
transforms like a four-vector. However, under spatial inversion an extra minus
sign arises. Such a quantity is termed a “pseudo-vector” or axial vector.

There exist many examples of polar vectors in classical physics, such as

Ff— —F

P

. drF dr .

V=w P @Y (2.26)
d*f d?7

=-—a .

a=

@z P di?

Perhaps the most familiar example of an axial vector is angular momentum

3!

L=Fxmd — (=F) x (-m¥) = +L . (2.27)

Similarly one requires that the spin be an axial vector

in order that the total angular momentum
Jj=L+38 (2.29)

have the property of transforming into itself under spatial inversion.
Finally, for the bilinear yo*¥¢

i i
(7" =) o ¢SS (" - ') S
boost

= 91727751 5 (147" —1*7*) 5% = $5715 (19" — 1*7*) S¥

=§5 (SIS SIS - ST S ST S) ¥

ow: PRy =9

N

= §zaha’ (11 =1 b=y
(2.30)
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Under spatial inversion
Yo'’y — 7’0 Y = pou v (2.31)

so that Yo#¥y transforms as a an antisymmetric second rank Lorentz tensor, an
example of which in the sector of classical physics is the electromagnetic field tensor
Fwv,

_ We have already seen the utility of one of these bilinear forms—the four-vector
¥v#1 has been identified as the conserved probability current density. Other uses
will arise in subsequent discussions.

VIl.3 NONRELATIVISTIC REDUCTION

It is helpful to construct the effective Schrédinger equation which applies in
the non-relativistic limit of the Dirac equation, as the resulting form must contain
various familiar structures.

Effective Schrédinger Equation
We seek a (positive energy) stationary state solution
¥(Z,1) = ¥(Z) exp(~iBY) (3.1)

with
E=m+W and W<<m . 3.2)

Then for the two-component coupled equations involving ¥,, ¥» we find

(m+ W — ed) Yo — & - Ty = miba

5 Fba— (m+ W = ed) o = mthy . 33
We may solve the second of these equations for 1, in terms of ¢4
PN S S (3.4)
2m 4+ W — ed
If W, e¢ are both much smaller than m, then since * ~ mv we have
Yp ~ VY K Yg for f’c- <1. (3.5)

For this reason %, (%s) is often called the large (small) component of the Dirac
equation. Substitution of Eq. 3.4 into Eq. 3.3a gives a relation for 9, alone

A T B
( '“2m+W—e¢“'”+e¢)¢“‘W¢“

1 . .. . | - =

(3.6)
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This is not quite the effective Schrédinger equation since 9, is not normalized to

unity. Instead we have

1= /dsz VI (E)Y(E) = /daz ¢I¢a +¢I¢b)

/d’w*( %_,-53 )¢a~/d’zxx

where we have defined 7. 7)?
g7
X = (1 + —8-7;12—) Ya -
Then if we add

8% (@ R)*(W — ed) + (W = e8)(@ - 7)?] ¢a
to each side of the Eq. 3.6 we find
(%(3 7%+ 8% (G- B)*(W - e4)
—25 - R(W — eg)7 - 7+ (W — eg)(F - 7 2)) Ya
AR G-
_(1+ - )(W e¢)( 8m )¢a

or in terms of the wavefunction x

(1+ (e‘:3 i'r)z)(W cWx (3 7)? (1_(8m2)2)x

+§r—n-2-(&-1?)2(W-e¢)-23-f(w-e¢)a.f+(w_e¢)(a 7

We can rewrite Eq. 3.11 by use of the identity
A’B —2ABA+ BAY = A(AB - BA) - (AB - BA)A
= [4,[4, B]

2
(W —ed)x = 2%(3 )’ (1 (4m2) ) X
+ 55 (@7, (G -7), W - ed]] x

Since, assuming }i(z) to be independent of t,

[7-7,[F-7 W —ed]] = [a--ﬁ,iea-% = —ie [a—-fr,a-E]

we have, finally
1 - 1 -
o~ (3 2 _ - (= 4
W 2 (o= (B~ e - o5 e )
e - - - - -
~ Wy Bt e~ g (VB 27 xE)x

which is the effective Schrédinger equation we seek.

2)x

(3.7)

(3.8)

(3.9)

(3.10)

(3.11)

(3.12)

(3.13)
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Interpretation

Interpretation of the various terms can now be undertaken. Thus in the spinless
case, we evaluated the relativistic Hamiltonian to be used in the presence of an
electromagnetic field described by the vector potential A, = (&, A), yielding

H=\/m2+(i)'—e.7l)2+e¢

1 . =y 1 " (3.16)
~m+ %(p—eA) - §—r;l-§(p—eA) +ed...
in the non-relativistic limit. Likewise in Eq. 3.15 we recognize
1 ., =
%(p - CA)2 + 6¢ (317)
as the usual Schrédinger Hamiltonian and
1 /., =\¢4
—5s (p - cA) (3.18)

as a relativistic correction to the kinetic energy. Similarly we identify the term

e = D _i"’ . B
as the energy of interaction of the magnetic moment of a spin-1/2 particle (with
gyromagnetic ratio g=2) with an external magnetic field.! As discussed above, this
arises automatically if we use
1 -

D . €
%U'ﬂ'd“ﬂ' 2—( A) —70 B (320)

for the kinetic energy term in the Hamiltonian rather than the simple spinless form
1 1 /., -\ 2
SR A= (-c4) . (3.21)

We can also identify the remaining terms in a straight-forward fashion. For

example, the operator
e

ayrid -Exp (3.22)
is simply the usual spin-orbit term since for ¢ = ¢(r)
= l1do. . . 1 d¢ .
—LE-Exp—L—ﬁ xp—L——éa’ L. (3.23)

4m? 4m? r dr 4m? r dr

The “classical” derivation of this form involves looking at the problem of the “atom”
from the perspective of the electron rest frame, in which case the central nucleus is
seen to be orbiting at the distance of a Bohr radius. In this frame, however, there
exists a magnetic field due to the Lorentz transformation of the electromagnetic

fields involved . .
B=-9x FE . (3.24)

! Note that the relativistic Bohr magneton is 5%.
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The energy associated with the interaction of the electron magnetic moment
with this induced field is

H=-f-B=—3-oxE=v=225.1 , (3.25)

which differs from Eq. 3.23 by a factor of two due to the » Thomas precession.”
The point is [Ja 80] that in an inertial frame the energy

-

U=-p-B (3.26)

associated with the interaction of a magnetic moment 7 with a magnetic field B
corresponds to an equation of motion

dS eB
== 3 x — (3.27)
where the have used the relation
p=—3 (3.28)
B=— :

between the spin and magnetic moment. However, in a non-inertial frame of refer-

ence one has . -
dS dS -3
—_—=— -@xS (3.29)
dt dt non-rotating

where & is the angular velocity of the rotating frame, and the corresponding inter-

action energy is
U'=-8.0 . (3.30)

In order to find the angular velocity & corresponding to our case, consider the
trajectory of an accelerating electron as shown in Figure VII.1.

Fig. VII.1: Trajectory of an accelerating electron.

Suppose that at time ¢ the electron is at position #1 with velocity ¥ while at time
t + 6t the electron is located at position #2 with velocity ¥+ 6%. Let the laboratory
frame be denoted by W, the rest frames of the electron at positions #1 and #2
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by Wi and W, respectively. Then one can reach W; from W by a simple Lorentz
transformation with velocity v

while one can reach W, from W by a Lorentz transformation with velocity v + 67

However, the transformation between the frames W; and W is in general a combi-
nation of a boost plus a rotation. To first order in 67 we find

ta=1t1 —Z; - 1 60 + 1 —1}90-6v
V1—1? V1—1?

52=51—t1\/11__v7(55+(\/11__v2.—1)00-617> (3°33)

+( - 1)5 x(z';'x&i)l
V1-=1? ' v?

which corresponds to a Lorentz transformation with velocity

1 1
AV = — [ 67 —_—1) 9067 3.34
v — (v+( A= )vv v) ( )

accompanied by a rotation through angle

= 1 I |
86 = (\/1—_v7 - 1) 7 x 6vv—2 (3.35)
The corresponding angular velocity is
. 60 1 A R SR
w_5_<\/1___vf—1)vxav—2~§vxa, (3.36)
leading to an additional interaction energy
4 - = 1 - - -
U =—w-S=—§vxa-S
1, e dp_.1 <
= —E’U X —;' FT; .S (337)
e 1dé-
= Timrrarl’?
Adding Eqs. 3.25 and 3.37 we find
e 1dé¢- .
Utot = m ; EL (N (338)

as found in reduction of the Dirac equation.
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The origin of the final piece of the effective interaction, the Darwin term

—_ E, .

82 (3.39)
has already been noted in our discussion of the Klein-Gordon equation, where we
showed that the zitterbewegung motion associated with the interference between
positive and negative energy components leads to a shift in the potential energy in

the amount
AU ~ l&r-&r--——az—ecﬁ(i‘) ~—
- ! / (9 0 J 2 . 3m2 (3.40)

p— —‘é_r;{z—v E .

Except for the factor of 1/6 rather than 1/8 this is clearly the additional term under
discussion. Because of this identification the Darwin or zitterbewegung term has
no classical analogy.

Hydrogen Atom Energy Levels: Perturbative Approach

Now examine the effects of these perturbations on the energy levels of the
hydrogen atom. For the zitterbewegung term we find that only S-waves are affected

L 2
(ABY, = —L<V-E>,,¢="—2<63<r>>nz
= g / d°r 8°(r) Yne(F)¥ne(F)
1 (3.41)
2—6zo |¥no(0)|” = 6‘0 (rn3a§)
4
_m;?&o .

while for the spin-orbit term S-waves are not altered in energy, but other angular
momentum states are shifted. Recalling that for a given value of orbital angular
momentum ¢, the total angular momentum

F=L+3 (3.42)
can have the value £+ 1/2 or £ — 1/2, we find

nt_ ©
(AE),, = m(

o -3 2 2 p3 ¢
) (PP ) = >,.¢{_

r-3)n12§-i
j=£+%
€+1) j=t-}

_ o 1 £ j=L+3
" 4m? <n3ao£(£+1)(£+2)) -(£+1) j=£-1
at e+t j=¢
:mm{_e_l jze_l
(3.43)
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Finally, we note that for the relativistic kinetic energy term

e8],

__1 2 (3.44)
=g (Ea=VOY),,
1
= —5—(Ea = 2E.V(r) + V(r)),,
According to the virial theorem
(V () = 2Bn (3.45)
and by direct calculation
1
2 2 a2\ _ 2
<V (r)>nt =o <r )nl =a n3ag(£+ 1/2)
4 (3.46)
=mle—
T n3(L+1/2)
Thus . ) 3
nt_ _ 2 -2
(AE), = ms3 (£+ 172 4n) . (3.47)
Our final result then, writing E=m+ W is
o? o? 1 3
W——mm(1+?(j+l/2—z;)+...) . (3.48)

We observe that the energy depends only upon j — it is independent of £. For
example, the 25;/; and 2P, /; states are degenerate, as used earlier in our discussions
of the Lamb shift. Also, we see that the shift has a similar form to that found in
the case of the Klein—-Gordon atom, but with

K-G Iaced b Dirac (3.49)
replaced by . .
£+3 iti
This may seem like a small difference, but it is easily measurable and agreement with
experiment for the hydrogen atom reguires the electron to be a spin-1/2 particle.

PROBLEM VIl.3.1
The Runge-Lenz Vector and the Hydrogen Atom

One of the remarkable features of motion in a Coulomb (or gravitational) field
is that there is no precession of the classical orbits. By use of the so-called Runge-
Lenz vector it is possible both to understand this result and to derive the energy
levels of a hydrogen atom without use of any differential equations.
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i) Verify this result by showing classically that

—=0 and L-R=0

where
R= 1s x L —2F
= m? r
is the Runge-Lenz vector. Show that for gravitational motion R points along
perihelion so that no precession takes place in the planetary orbits for an exact
1/r potential.

i) If we define quantum mechanically

- 1 - - - - a_'

R—%( xL—LXp)—:r

show that . e L
H,I)=[H,Rl=0 R-I=L.E=0

ili) Verify that
R*=a’+ %H(L2 +1)

so that the Hamiltonian can be written in terms of two constants of the motion.

iv) Define K = %"-R and

M:-—(E+R) 1'\7':.-

N =
~
t~
|
=i
N

Show that
[M;, Mj] = ieijp My
[Ni, Nj] = ieijpNg
[M;,N;]=0

Thus M and N obey commutation relations for angular momenta and commute
with each other and also with the Hamiltonian

ma?

H=—amrranisD) -

We can then find simultaneous eigenstates of H, M2, N2, M,, N, with

H|E,m,n,m;,n, >= E|E,m,n,m;,n;, >

M?|E,m,n,m;,n, >= m(m+1)|E,m,n,m;,n, >

N%E,m,n,m,,n, >=n(n+1)|E,m,n,m;,n, >



VII.3 NONRELATIVISTIC REDUCTION 301

M;le,m,n, m,;,n, >=m,le,m,n,m,;,n, >

N:|E,m,n,m;,n; >=n,|E,m,n,m,,n; >.

v) Show that R- L = 0 implies K - L = 0 and hence that M? = N2.
vi) Show that this in turn implies

ma?

E=-5=

where k=1,2,3,... with degeneracy factor 2n?, as required.
PROBLEM VIl.3.2
The Anomalous Magnetic Moment

The Dirac equation describing the interaction of a proton or neutron with an
applied external electromagnetic field has an additional term

(i V-0 4+ 58, e - m) v =0

m

involving the so-called anomalous magnetic moment. (For the proton, of course,
Q;: = |e| and for the neutron Q; = 0.)

i) Verify that the choice
kp =179 kn = —1.91

corresponds to the observed magnetic moments of these particles, and

ii) show that the additional interaction disturbs neither the Lorentz covariance of
the equation nor the hermiticity of the Hamiltonian.

PROBLEM VIl.3.3
The Aharonov--Casher Effect

In Section III.3 we discussed the Aharonov-Bohm effect which shows that in
quantum mechanics the behavior of particles can be altered by the presence of a
non-zero vector potential even though the magnetic field vanishes in all regions of
space accessible to these particles. More recently Aharonov and Casher [AhC 84]
pointed out another interesting quantum mechanical process whereby the behavior
of magnetic dipoles is altered by the presence of an electric field. In this problem
we explore this effect.

i) The Dirac equation which describes an electron in the presence of an external
vector potential A, is

(i V —e 4 —m)y(z) = 0
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Writing the energy as E = m + W and making a nonrelativistic reduction as
done in the text, show that the effective Schrodinger equation which results is

7 (p—eA)d - (p— )
- 2m

Y(z) = Wi(z)

ii) For the standard version of the A-B effect one uses an infinite solenoid posi-
tioned along the z-axis so that in cylindrical coordinates

B 2
2}:é¢ r>R

A(z) =

where R is the solenoidal radius. Show that for this geometry the effective
Hamiltonian becomes

1 & )
Hep =53 (pi — eAs)

1=1

iii) As shown in problem VII.3.2, the Dirac equation describing the interaction of
a neutral spin 1/2 particle with an external electromagnetic field is given by
——C
(1 V +?n-6“yF‘w - m)w(z) =0
where x is the magnetic moment. Now consider a beam of neutrons polarized
along the z-axis interacting with a line charge with charge per unit length A
aligned along the z-direction. Perform a nonrelativistic reduction of the above
relativisitic equation and demonstrate that the effective Schrodinger equation
is
G-(p—ik'E)e-(p+ik'E)
2m

¥(z) = Wi(z)

where «’' = k|e|/2m and

is the electric field generated by the line charge.
iv) Show that this Hamiltonian is equivalent to the form
Exp)? k2E?

_(B-
Hea = 2m 2m

for the geometry at hand, where ji = k'G. Replacing Het — Heg' = x! Heax;
verify that

2
1 -
’ _§ : . 12 \.12
Heﬁ = 2m i_l[pg (E X K e')'] )
which is completely equivalent to the A-B Hamiltonian provided we make the
replacement k'E — eA.

We observe then that the Hamiltonian is the same and hence there must exist
an effect on the magnetic dipoles for the A-C situation in complete analogy to that
on electric charges for the A-B geometry. Recently this prediction was confirmed
experimentally [Ci 89)].
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Vi.4 COULOMB SOLUTION
Although we have derived the 2S),3 — 2P;/; degeneracy within the context of

first order perturbation theory, the result is more general and is valid to all orders
in the fine structure constant «, as we shall demonstrate.

Hydrogen Atom Energy Levels: Relativistic Approach

We begin with the Dirac equation in its usual representation
(Yum* —m)y(z) =0 where w7, =iV, —eA, (4.1)
and introduce the projection operators
PLPy=2(1-m),5(1+%) . (42)

[Note that since v2 =1 we have P2 = PZ =1, PP, = P, P, = 0.] If we define

1 = Py, Y2 = Poyp (4.3)
then since
Pyyy =y, Py (4.4)
we find
P27p7r“¢ = 7;47'“P1'/’ = 7#7"“"#1 (4 5)
=mPyy = my), '
or 1
Y2 = -';‘7“71'“ Y1 . (4.6)
Also, since P; + P, = 1 we find
1
Y=191+9Y2= (1 + ;‘Yﬂ’“) ¥ (4.7)

so that knowledge of 9, is equivalent to knowledge of 1 itself. From Eq. 4.7 we see
that ¢; obeys the equation

m (v —m) ¢ = (yur* —m) (ur* + m)9hy =0 . (4.8)

1/1 1
P1=§(1 1) (4.9)

a stationary state solution %; having definite orbital angular momentum £ must be

of the form .
Y1 = (’;((;;) ¢-iEt (4.10)

Also since
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where the x,’s represent two-component spinors which satisfy the equation

+ E? - m2) xe(F=0 . (4.11)

1 62 E ft+1)—a®—iaG-#
r Or? *T r2

Except for the term involving the Pauli spin matrix &, this differential equation is
identical to that studied in the case of the Klein-Gordon atom
1 62 g +1) + 2m'a
’ r or? r2 r

+ k’) Y(r) =0 (4.12)

provided we make the substitution

LL+1)—al=2'(+1)
E*—m?=k?=2m'E (4.13)
E=m

Eq. 4.11 then becomes

1 82 g +1) 2ma ., . 1, . -
(;‘- v L el +k +ie—5-f xe(F)=0 (4.14)

and can be diagonalized in terms of functions ¢fm which are eigenstates of J2, L2,
S22 7,:
bim =D Cofiises YO0 00X} - (4.15)
Pe

Explicitly, we find

. (((j+m)/2j)1” }3’2:}2”0”@)
"\ G- my) v,

(4.16)
3 ‘(((,-+1_m)/2(j+1))1” }?'1?/12/2(0’¢))
NG+ my2G ) Y0 4)

Observe that ¢;fm have opposite parities—if II is the spatial inversion operator
Mg¥, = (-1yF/%¢, (4.17)
—and that they are connected via the operator & - #
G- 1"-¢;.!,:m = ¢j4,:m ) (4.18)

This result is clear since
i) 7 - is odd under parity;
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i) (¢-7)2=1;

iii) [.7,3-1‘-] =0;
so that eigenstates of J are also eigenstates of 7 - #. [For the latter result note that
for J;: 5

L,=-i—: [L,,0sinfcos¢+ oysinfsin¢ + o, cos 0]

9¢

= —i(—0o;sinfdsin ¢ + oy sin f cos ¢) (4.19)

S;=—=: [S;,0-8in0co8¢+ oysinfsing + o, cosb)
= ioysinf cos ¢ — io-sinfsingd .

Thus (and other components may be proved similarly)
[(Js,0 - F)=[L;,7 7] +[S;,0-F]=0 . (4.20)

Now choose the linear combinations

Fin=éimt p (J' +5- s) ¢Fm (4.21)

\? 1/2
5= ((J + 5) - oﬂ) : (4.22)
Then we have

(L? - o® —ia& - 7) Ff, = (L’—a’:t(j+-21-—8))¢}h,m

where

; 1 (4.23)
+(¢; <j+-2-—s) (L’-az)-ia)¢jfm :
But .
(Lz_azi(j+§—3))¢}h,m="i(u:t+l)¢fm (4.24)
with L1
ur=8s-5%3 - (4.25)
[Check:
V(i 1) —a2aial) et
(Lz—azi(j+%))¢fm={((. :) (J+:) 012+J.+:)¢::m
((+3)(+3)-e~i-3)é/n w2s)

1 2
((" +3) ‘“2) $im =245
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2 —s=s(s—1)=usp(usp +1)
2+s=s8(s+1)=u_(u-+1)

(oot 0--)r

q.ed.]

Also

i1 2 _ 2 +
=+l (ivg-o) |2 a:FJ+__8]¢],

a 2

i (.1
=¢10+——

_i'+.1__
=EFa VT2

3) [L2—02=F(j+-2-+s)]¢f,m

8) ut (ux +1) ¢,

Thus
(L - a® —ia7 - #) FE, = ug (s + 1) FE,
and Eq. 4.14 becomes

1 82 2m'a .,  us(ux+1)
(:5,3’ - B =0

(4.27)

(4.28)

(4.29)

which is completely identical to the Klein-Gordon case provided we make the sub-

stitution
l’(l’ + 1) — ui(ui + 1) . (430)
The associated energy levels are then given by (cf. Eq. VI.3.34)
-1/2
o?
En,jzm(l'*' ; 1 2) n=1,2,...
(n+s-(i+3)) (4.31)
~m 2 nz n2 j + % 2 “en
which is identical to that found in the Klein-Gordon case, but with
K-G laced b Dirac (4.32)
replaced by ) .
£+3 it

in agreement with experiment for the hydrogen atom. Also, in the Dirac case there
exists a twofold degeneracy in all levels with the same value of j and n, so that e.g.,
as claimed earlier, the 2P, /3 and 25/, levels are degenerate to all orders in a.

VIL.5 PLANE WAVE SOLUTIONS

It is particularly useful to examine plane wave solutions of the Dirac equation,
corresponding to a freely moving particle, since it is with such wavefunctions that
one can develop an intuitive feel for the physics.
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Derivation

We begin by writing o
¥(z) = u(p) e~ P2
= u(p) e~ oD

where u(p) is a four-component spinor. Since

iVHe T = ph =7 (5.2)
the free particle Dirac equation

(74 V* — m) (z) = 0 (5.3)
becomes an algebraic relation

(Yup* —m)u(p) = (b —m)u(p) = 0 (5.4)

which is equivalent to four linear homogeneous equations. In order for a solution
to exist, we must require det(p —m) to vanish, and one could proceed to solve
the system formally in this fashion. However, we shall utilize an alternative, more

intuitive, approach, writing
Ug
u(p) = ( ) (5.5)
up

where ugs, up are both two-component spinors. Then the validity of the Dirac
equation requires

(1’E -7 -5) u(p) = (E """’) (“) =m("°) (5.6)
| c-p -E up up

which yields the pair of coupled equations

Eug, — 7 - pup = mu, 5.7)
—FEuy + 6 -pu, = mup . )

There exist two relations between the spinors u,, us which must both be satisfied

-

G5 G-

)~

Ua =t up E'+mu° . (5.8)
We thus require .
: _ 35 _355p
up E+mua = mub . (59)

Using the identity
7-p-p=p> (5.10)
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we see that Eq. 5.9 is satisfied provided that
E? —m? =p? (5.11)

which is the desired relation between the relativistic energy £ and momentum 5.
Of course, for a given value of the momentum p there exist two solutions for the
energy

E =+\/p* + m? (5.12)

as found in the case of the Klein-Gordon equation.
Consider first the positive energy solutions. We define

uq = Nx (5.13)

where x is a two-component spinor and N is a normalization constant. The lower
component up is then

_y P
ub_NE+mx . (5.14)
and our solution takes the form
X
u(p) =N ( 3.3 ) . (5.15)
E+mx

There exist two linearly independent spinors u(p) corresponding to the two linearly
independent values for x — call these x; and x3 (e.g. we could take x; = ((1)) and
x2 = () with x]x2 = xx1 = 0 and x{x1 = xdx2 = 1.

In order to normalize the Dirac spinor, one’s first thought might be to place a
normalization condition upon u(p)u(p). However, this is a non-relativistic way of
thinking and would not be Lorentz invariant. Defining
uly0 (5.16)

i

we have already shown that 4u is a Lorentz scalar quantity. Thus we may set

i(p)u(p) =1 . (5.17)
as our normalization condition and this will hold in all frames. Since
W)=N{ ,; a(p) = N* (x' A (5.18)
2hox) Nean) ©

Eq. 5.17 becomes
- == - -2
1= N2 l_d.pa.p = N2 1-— 14
IN] ( (E + m)? IV (E + m)?

i \ 5 . (5.19)
vz (1L mm N _ v LM\ _ 24T
=N (1 (E'+m)2)_INI (1 E'+m)_INI E+m
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Thus we choose
E4+m

2m

u(p)=,/E2+—m’"( p’;%x) . (5.21)

We have then two linearly independent positive energy solutions u;(p), u2(p) with

ti1(p)u1(p) = Ba(p)ua(p) = 1 (5.22a)

N =

(5.20)

and

@1 (B)uz(P) = @2(B)ur(P) = 0 . (5.22b)

Sometimes one picks the corresponding Pauli spinors xi, x2 by the requirement
that

G-Px1=x1, OG-PXa=-Xx2 . (5.23)

Then the Dirac spinor constructed using x; is said to be in a positive “helicity”
state, while that constructed from x; is said to have negative “helicity.” Positive,
negative helicity corresponds to the spin being parallel, antiparallel to the direction
of momentum. .

Now consider the two remaining linearly independent negative energy solutions.
We shall construct these spinors for the case that p is the negative of what it was
above. That is, we define

¥ =(-E,-p)=-p" , (5.29)
and assume a solution of the form
V() = v(p) e "7 = v(p) e . (5.25)
As before, the Dirac equation becomes an algebraic equation
(yup* + m)v(p) =0 . (5.26)
Writing
v -E G- puy =
v=| we have v,:+ 7Pt = M (5.27)
v —0 - pvg + Evy = muy
which yields .. L.
_G-p _Gp
Vg = E+mvb , v = E—mva . (5.28)
Picking
=Ny . (5.29)
we find . .
ve= N—2_, (5.30)
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and

2By
v(p)= N (’“’" ) . (5.31)

Thus

- - 3 '
5 — N2 [ 1P FmX
o(e0(e) = INP? (x1 e, ~x )( i )

(5.32)
_ NPyt (PGB '= INR2™
INTx ( (E+m)2+1)x N s rm
so that if we normalize to
3(p)v(p) = -1 (5.33)
we have, as before
E+4+m
N= o (5.34)

Note that the positive and negative energy solutions are orthogonal in that

2B .
i(p)v(p) = IN|? (x' -x'g +p ) (E’;',‘x ) =0 . (5.35)
We can summarize these results concisely as
# u(p) = mu(p) ? v(p) = —mv(p)
(5.36)
i(p)u(p) = 1 o(p)v(p) = -

with the orthogonality condition

#(p)u(p) = u(p)v(p) =0 . (5.37)

One can also write the Dirac equation in its conjugate form . Thus

Yup*u(p) = mu(p)  implies  u'(p)yip* = mul(p) . (5.38)
Since
7= (5.39)
and
757 = 77" = 11, (5.40)

we can write Eq. 5.38 as

i(p) p= mi(p) and also  o(p) p= —mv(p) . (5.41)
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Boosts

We can understand the form of these plane-wave spinors in an alternative
fashion by using the boost operator derived earlier. Considering a positive energy
electron at rest, we have the spinor

Lo [x
u(p_O)—(O) . (5.42)

If we view this state from a frame moving with velocity

A

U= —vk (5.43)

so that

t+ vz , z4 vt '
) = ) = ) = 5.44
V1—12 ‘ V1=142 V=y i (5.44)

the corresponding Lorentz transformation matrix is

t =

_ 6 3 0 . _ E _ 1 . _pP _ v
S(a)_exp—§7 v’ with coshf = ms A sinh§ = —= W |
5.45

and the Dirac spinor as viewed in this frame becomes

: cosh §
u(p) = S(a)u(p =0) = (cosh g — 74 sinh g—) (X) = ( 2X ) . (5.46)

0 sinh %a'sx
Since
cosh? b = l(1+cosh0) = E+m
2 2 2m 5.47
. 2 0 1 h0 1 E -m ( ) )
smh -2-—-2-(008 - )——2-;—
we have

E+m X E4+m ( X )
u(p) = . . = \/ —_ _ (5.48)

in agreement with Eq. 5.21. Similarly for a negative energy spinor, we find

- - 0 E+m Ea"%x
v(p) = S(a)v(p = 0) = S(a) (X) =\ om ( +X ) (5.49)

which agrees with Eq. 5.31.
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Rotations

It is also useful to examine the free Dirac spinors from the point of view of
rotations in order to get a feel for the physics involved. This is most easily displayed
in the case of an infinitesimal rotation by angle ¢ about say the z-axis

-/

=2+6% 0% = (—z300,164,0)
. (5.50)
= —5 X 6¢

For a spinless particle, e.g. the Klein—-Gordon equation, it is well-known that the
angular momentum operator L is the “generator” of rotations in that after rotation

we have! L. ..
#'() = exp (i63 - L) ¢(2) » (1+i68- L) ¢ . (5.51)

On the other hand for the Dirac case, we expect rotations to be generated by the
total angular momentum J = L + %-E

¢'(z) = exp (i6$ . .7) ¥(z)

e (= 1= (5.52)
s (1455 (24 15)) veo
where 1z g
14 20
=Y = .
2 (0 ) (559

is the spin operator. We can verify this conjecture since we know the form of the
Dirac solution under rotations

¥'(z') = S(68)¥(=) (5.54)
where 5 5
5(6$) = exp (—;fﬁ) ] 7172-2ﬁ . (5.55)
Note that
0 oq 0 09 —i0’3 0
= = . 5
L (—0'1 0 ) (—62 0 ) ( 0 —iaa) (5.56)
Then o
7Y = —i€ipZ (5.57)

! Usually Eq. 5.51 is written in the equivalent form
¢'(z') = (=)

where x is the point which rotates into x’.
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and V(&) = (1 _ z,wg% + 316¢52—2- + iézm) (=)
= (1 +ib¢ (:clpg — zap1 + %Ea)) ¥(2) (5.58)
- (1 46§ (z +35) ) vee")

as expected.

We also verify that although

[H,i] - [a- (5—e}i) +e¢+ﬁm,?xi)]

) L (5.59)
= —ig x5+e[¢,L] —efa-A,I)#0

and
[H, -21-2”:] = [a- (5-e71) +ed + fm, %i]
= id@ x (5—3;1) #0

if we consider a particle moving under the influence of a spherically symmetric
potential ¢(r) so that

(5.60)

A=0, [Lém)]=0 (5.61)
we find )
(8,7] = [H, L+ 533] =0 . (5.62)
—the total angular momentum is a constant of the motion, as expected.
Helicity

It is particularly interesting to examine the time development of the helicity

. (ﬁ - e}i), where p—eA is the so-called “mechanical” momentum mz (as opposed
to the canonical momentum 3). Since

[H’i'; - eZ] = [5‘-. (i') - eZ) +~€¢ 't pm,p — e:‘i] (5.63)
=1eV¢ —iea x (V x A)

we have
[H,i-(ﬁ— ed)] = [Hfl] (P—ed)+ 5 [H,i:—e}i]

Lo (5.64)
=1eX V¢ .

For a free particle — ¢ = 0, A =0 — we find

[H, 5. 5] =0 (5.65)
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so that helicity is a constant of the motion. However, this result is more general.
Imagine an electron moving in a region where E = 0 (take V¢ = OA/at = 0) but
B # 0. It follows then from Eq. 5.64 that

[H, 5. (5 ez)] =0 (5.66)

which means that the helicity will be also be unchanged in this circumstance. In
particular imagine a longitudinally polarized electron moving in a uniform magnetic
field B. Then the trajectory of the electron will be a circle as shown in Figure VIIL.2,
and the spin vector will exactly track the mechanical momentum.

X X X X
X X
X X
X X X

Fig. VIL.2: The electron trajectory in the presence of a uniform magnetic
field is a circle of radius mv/eB.

The reason for this is clear. According to classical physics the rotation frequency
of the electron — the Larmor frequency wy — is found to be

2
=evB) . (5.67)

On the other hand, the spin precession frequency wgs is determined from the torque
equation

ds _ & _ geeB
—t =S x om (5.68)
which yields
_ ge.eB
ws = S~ (5.69)

We see that the Larmor and spin precession frequencies are identical (for g.=2),
and this is the origin of the constancy of the helicity.

Current Density

Finally, consider the current density

* =9y . (5.70)
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Between identical plane wave states—u(p) e~*P'*—;j# assumes the form
7 = w(p)r*ulp) = 7o) (= # 7 +7* $ =) u(r)
2 m m

M
= (using the identity v*v" + 4’ y* = 2n*") ﬁ(P)I,‘)n‘u(p) (5.71)
p*

m

This proportionality to p#/m is easy to understand. Since the probability density
is j°(z) the probability of finding this particle in a volume d3z in the rest frame is

°(z)d®z = %da:c =dr . (5.72)
As viewed from a frame moving with velocity
T=—vk (5.73)
the probability density becomes
' E 1
201
)= —= wher = . 5.74
j (=) m v ere vy \/i—_’v’- ( )

However, because of the Lorentz contraction, the region of space being examined is
correspondingly smaller

d3z' = %d’z : (5.75)

so that the probability of being found within this volume is unchanged, as required.
j(=")d%' = %dsz' =X %daz =d%% = j%(z)d%z . (5.76)

The corresponding three-vector component of the current density is also found as
expected via

3"(31) — j'O(zl)v — E i 2 . (5.77)

Considering the so-called transition current density, taken between different
solutions of the Dirac equation ¥;, ¢y, we have

(@) = B i(2) = 5= (B @7 B,8:(2) — (8,85 (D)7 1 $i(=))

(5.78)
Now write . .
ifhy’ = %{7“, 7} + ';'[‘r“,'r”] =int + o . (5.79)
so that
(@) = 5= ($7(2)8" (=) — 45 (=) i(=))
(5.80)

+ % (%4(2)a*" 8, () + 8,9 (z)o* i(z)) = j¥ 4§
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We observe that there exists a more or less natural separation of the current density

into two components:
i) For the first piece — Mk — gince for positive energy solutions the lower

component of the Dirac spinor is O(v/c) compared to the upper component, we

have 1 0 ¥
J)d) = ¢1tx er'/’fower ( ) ( upper)
( PP ) 0 -1 Yiower (5 8 1)

= Y} pperYupper (1 +0 (Z—:)) ~yly .
We can write this contribution to the transition density as
F# {; (¥t 0,9 — B,9ty) (5.82)
which is identical to the usual Schrédinger form of the current density.
ii) For the second piece — j(?) — we note that its contribution to a Lagrange
density would be of the form
Lint = —ej* Ay ~ —Q%A“a,(ui,aﬂw.-) . (5.83)
Writing Eq. 5.83 as
Lint = —5— (0, (Auty o™ i) = B, Autby o™ i) . (5.84)
we see that the first piece may be discarded, as it is a total derivative and con-

tributes only a constant to the Lagrangian. For the second term we may use the
antisymmetry of o#” to write

1 _
Lint = 2_:1: 5 (OvAu — BuA)) By vy

e _ (5.85)
= —4_m uv'd’f” i .
Looking at the non-relativistic limit, we have
’;f ojj ¢i ~ fi'j k ¢Lpper0'k¢upper ( )
- o v 5.86
'lbf ‘70'¢i ~0 (—) 'I’I,ppero'i"pupper .
c
Hence, keeping only the piece involving o;; and noting that
Fij = —¢€ijx By (5.87)
we find e
Lint = mfijkBk€ij¢¢f.ppertn¢upper
(5.88)

e = -
= 2_mB ‘ wlppera'pupper .
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The corresponding Hamiltonian density is

e = -
Hint = —Line = —2—mB <! operWupper (5.89)
which is the usual energy of interaction of the electron magnetic moment
= —yta

with an external magnetic field. For these reasons j,(‘l) is called the “convection”

current density while j,(‘z) is referred to as the “magnetization” current density.
Experimental values of the gyromagnetic ratio for real spin-1/2 particles are
found to be

electron gexp = 2 (1 + % +.. )

proton gexp = 2(1 + 1.79) (5.91)
neutron gexp = 2 (0 - 1,91) .

Does this mean that these are not Dirac particles? Not really. In the case of
the proton and neutron, a microscopic view of these systems reveals that they are
far from being simple pointlike spin-1/2 structures. Rather they are composed
of three pointlike particles called quarks and the bound state wavefunction, which
extends over distances of the order of 10~13 cm, clearly does not represent a pointlike
structure. At a second level particles like the proton/neutron can fragment virtually
into a nucleon-meson system with which the photon can interact, as shown in Figure
VIL.3.

p P
— N
\ >N
0 \
NN | = n YV\.:V\
p / ] 7
| 7 /
|~
P P

Fig. VII.S: Mesonic corrections to the nucleon-photon interaction.

Again we should expect substantial deviations from the result g=2 expected for
a pointlike particle. In the case of the electron, there exists no quark substructure
to deal with (as far as we know the electron really is a point particle). However,
the electron can fragment into an e — 7 system as shown in Figure VII.4

Fig. VII.4: Radiative corrections to the electron-photon interaction.
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which yields a modification of the g-factor, but only at O(a), as will be shown in
the next chapter.

PROBLEM VIL.5.1
Electric Dipole Moment of the Electron [BjD 64]

Suppose that the electron had a static electric dipole moment d analogous to
its magnetic moment.

i) Show that this could be accomodated by modifying the Dirac equation to
become

(V-4 —if:—‘-a,w%F“" —m)(z) =0 .

ii) Demonstrate that this equation is covariant but not invariant under a parity
transformation.

iii) Show that this interaction would lead to a mixing between the 25, and 2P,
levels of the hydrogen atom and from the observed agreement between calcu-
lated and measured values of the Lamb shift at the level of a 0.05 MHz obtain
an upper bound on the electric dipole moment of the electron.

Note: The relevant matrix element vanishes if the nonrelativistic wavefunctions
are used—you will need the appropriate relativistic solutions.

PROBLEM VIl.5.2
Chirality and the Dirac Equation
The operators

1 1
Pp = 5(1 + 75) Pgr = 5(1 - 7s)

are projection operators which are said to identify states of definite chirality (hand-
edness).
i) Show that Pr, Pg are legitimate projection operators in that

P:=PL Pi=Pr PLPR=PgrPL=0 .
ii) Demonstrate that in the limit of high energy—E/m >> 1—or equivalently in

the massless limit that the Dirac spinors for positive helicity (right-handed)
and negative helicity (left-handed) states of momentum g are given by
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Note: In order to conveniently deal with massless particles, it is important to
use the normalization u(p)fu(p) = 1. The appropriate Dirac spinors can then be
found by multiplying the usual forms by the factor ,/—'E". Demonstrate this.

i) Show that
Pru_(p)=u-(p)  Prut(p) =us(p)  Prus(p) = Pru-(p) =0

so that the chirality operator is equivalent to the helicity operator in this limit.

PROBLEM VIl.5.3
Electron in a Magnetic Field

Consider an electron immersed in a uniform magnetic field
B = Boi? .

i) Obtain the most general four-component positive energy eigenfunctions and
demonstrate that the energy eigenvalues are given by

E=\/m2+p§+2neBo n=0,1,2,...

ii) Compare your answer with what is expected nonrelativistically.
VIII.6é NEGATIVE ENERGY SOLUTIONS AND ANTIPARTICLES

It is important at this point to address the question of the meaning of the
negative energy solutions. We know that quantum mechanics is based upon the

prescription
p* — i not p* — —i0* . (6.1)

But physical observables are real numbers and so cannot depend on this choice of
+i vs. —i. Does this freedom correspond to any freedom in the physical world? One
answer is yes — it represents the particle/antiparticle duality seen in nature. We
have already observed this duality in the case of the Klein—-Gordon equation, wherein
a particle solution corresponds to the positive energy Klein-Gordon wavefunction

Ppart(z) = dE>0(2) (6.2)

while the antiparticle solution corresponds to the complex conjugate of the negative
energy solution

¢antipart(z) = ¢‘E<o($) . (63)
Antiparticles and the Dirac Equation

Similar results obtain for the Dirac equation. If we begin with a positive energy
solution

Yey=e'BlyEy  E>Q (6.4)
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which satisfies the equation
(i V —e 4 —m) ¥(z) = 0 (6.5)

then we may identify this as the wavefunction of a particle with charge e.
On the other hand, if we consider the negative energy solution

Y(z)=eF'YE) E=-W<O0 (6.6)
and take the complex conjugate
P*(z) = e~ Wiy (3) (6.7)
we see that this wavefunction obeys the differential equation
(=iVHy, —eA*y, —m) ¢*(z) =0 . (6.8)
In order to reproduce the Dirac equation, we need a transformation under which
Yo = ~Tu - (6.9)

That is, we seek the “charge conjugation” operator Cy° which satisfies

. -1
€)1 (C7°) " == - (6.10)
Since
1%=", N=m, B=-T2, B=7s (6.11)
we observe that the choice
CY=in , (C7°) =in (6.12)

will suffice. Under this operation the Dirac equation becomes

Cy° (=iVH9} — eAr vy} —m) ¥*(z) = (1V¥ 9, + eA¥y, — m) Cy%%*(z) = 0 .
(6.13)

If we define the antiparticle solution to be
'/’antipart (z) = C70¢'* (z) (614)

we see that t)antipart(Z) obeys the Dirac equation for a particle of charge —e and
carries the correct (positive energy) time evolution.
[Note: Since

pl=y* (6.15)

where ~ indicates the transpose we have

¥ =79 = 1%9" . (6.16)
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Thus the antiparticle solution is sometimes written as

Vantiparticte(z) = C¥ ] (6.17)

An interesting feature has to do with the intrinsic parities of these parti-
cle/antiparticle solutions. For a particle (positive energy) solution %(Z,t) we have
(cf. sect. VIL.2)

H'/J(E’t) = 7o¢(—5at) = 70 (

_ ( ¢d(—5$t) )
_d)b(_z ’ t) ’
where II is the spatial inversion or parity operator. Thus upper and lower compo-

nents of the wavefunction then have differing behaviors under a parity transform.
However, this is to be expected, since we have

1/’4(—5’0)

1])5(—5,’!)
(6.18)

(b" (—iV - e}‘i)

= Erm

Ya . (6.19)

and the extra minus sign arises from the behavior of 6, A under parity

v, A — -V,-4 . (6.20)

However, if we look at the analogous negative energy or antiparticle solution,
we find

(6.21)

P'pantipart(i,t) = 70070¢‘ (—5,t) - _070 ( ¢a(_x: t) )

=¥; (=%,

Thus the intrinsic parity of Dirac particles and antiparticles are opposite! (This
is to be contrasted to the Klein—-Gordon case wherein one finds identical pari-
ties for particle/antiparticle solutions.) This feature is verified experimentally in
study of positronium decay or in the observation that ground (S-wave) states of
quark-antiquark bound systems — i.e., 7, K, 7 mesons — are determined to be
pseudoscalar rather than scalar quantities.

Dirac Sea

When Dirac found these negative energy solutions, he did not in the beginning
understand their significance. (Recall that the Dirac equation was written down in
1928, but Anderson did not find the positron until 1932.) At first Dirac was worried
that, since nature always prefers to lower the energy, positive energy electrons would
radiate photons (of energy 2 2m) and fall into negative energy states. However,
once in a negative energy state the electron could reduce its energy even further
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by radiating additional photons, thus lowering its energy indefinitely. Since this
does not happen — experimentally the electron is stable— Dirac was faced with a
dilemma. He solved this crisis by postulating that all negative energy states were
already filled. Then, according to the Pauli exclusion principle, positive energy
states are unable to make transitions to negative energy levels. Nevertheless, it
is possible for an energetic (w2 2m) photon to cause a negative energy electron to
make a transition to a positive energy state leaving a “hole” in the set of of negative
energy states.

The vacuum (i.e., lowest energy state) in this picture consists of a “Dirac sea”
filled negative energy states, and the net charge of a given state must be defined
with respect to the vacuum. Thus a hole state behaves as if it had charge

Qhole = (Qvacuum - (e)) — Qvacuum = —€ (6.22)

i.e., the negative of the electron charge! (Of course, Qvacuum is infinite but we
have seen such infinite renormalizations before.) Similarly if the momentum of this
(negative energy) state is p, the hole, upon renormalization, will behave as if it has
momentum

ﬁhole = (ﬁvacuum _5) - ﬁvacuum = —5 . (623)

(In this case we expect ﬁvacuum = 0 since for each negative energy state with
momentum P there is another with momentum —p.) Finally, for the energy and
spin we have

Ehole = (Evacuum - (—E)) - Evacuum =+FE

%Ehc)e = (%Evacuum - %E> - '21'2vacuum = _%E .
so that the hole state behaves as a positive energy, positive charge state of momen-
tum —p and spin —%E. We recognize this state as a positron, whose existence was
predicted by Dirac prior to its discovery. (Actually, Dirac first identified this an-
tiparticle solution with the proton, but soon realized that its mass must be identical
to that of the electron.)

We see then that the process by which an energetic photon ejects a negative
energy electron from the Dirac sea, knocking it into a positive energy level and
leaving behind a negative energy hole is to be interpreted as the process of pair
creation

(6.24)

v —ete” . (6.25)

Since only a very energetic (w2 2m) photon can bring about such a transition, one
might be tempted to think that antiparticle states should not play an important
role in low energy quantum mechanics. However, this is not correct. Consider the
scattering of photons by a free positive energy electron. (This is the relativistic
analog of the Thomson scattering process discussed previously.) Writing the Dirac
equation in Hamiltonian form

i%¢=(&-5+ﬂm+e7°4)w
=(Ho+V)y

(6.26)
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we recognize the interaction potential as
V=e"4 . (6.27)

and can apply canonical time-dependent perturbation theory. Two obvious dia-
grams which arise in second order are shown below

- Py 1 Y - ez
"-k2,€2V .V-.'klfl = e—
<p2) Epl +wy — Ho Py Ky, ’__2(.0120)2
k£,
pz .; - - .E
(52 &.ege-iha?|p, +k1> (51 +F la-e,e' 12 p1>
pri+ky X
Epl + Wy — Epl+'k’l
1 41 kl'é\l
k&
pz\ 2 2 - - -
- 52 ‘a . é‘le:k,.élisl _ kz) <i71 _ k2 I& . g;e—ih-l 1-51>
1-%2 X
P Epl - Wy — Eﬁl—i:
/ \kl',e\l
P,

(6.28)
which correspond to similar diagrams discussed in the analogous non-relativistic
case. However, as Eq. 6.27 contains no term in A2, there exists no analog of the
seagull diagrams for the relativistic situation. Also since in the non-relativistic limit

u(p) —> (") (6.29)

0
0
a= ( ) (6.30)

couples upper and lower components so that
ul(p")au(p) = 0, (6.31)

while

o Q

Q

there exists essentially no contribution to the scattering from the above pole dia-
grams.
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The paradox is resolved if we include the contribution from the diagrams in-
volving negative energy solutions as shown below

SN e ot i, 2
Nl

kb

B)

ps+ kz) <p2 + ks ,a éreifr2

. 616’;‘ 2 - I-C.1> <§2 - El a- E;e_"h'i f)1>

_Ei’: + wi — Ei’g—ix

P
;Bl
=7}

P

Py

kb

(6.32)
Then if w << m and working in the non-relativistic limit where

ot (p')au(p) ~ x 17x (6.33)
the sum of these negative energy diagrams yields

e? 1 <
Ampx ———— — (Ta-e* X[ e + x5 - axaxdd - 6x1)
p \/Z'mw— 2m; X2 2 Xi X 1X1 X2 1XiX; 2X1
2
-
\/lefwg 2mx2(
e? 1

= 2w am 2t auxdx

which 1s identical to the seagull contribution found in the analogous non-relativistic
case. We observe then that the inclusion of these negative energy states is absolutely
crucial. Without these pieces the Dirac picture of Compton scattering would not
reduce to the simple Thomson process.

Al = A

7.6 +7-670-6)x1 (6.34)

Zitterbewegung

We have already discussed the presence of zitterbewegung associated with the
origin of the V- E term in the effective non-relativistic Hamiltonian. We can study
this phenomenon in more detail by examining the velocity operator @. That the
Dirac matrix @ is related to the relativistic velocity is clear from the relation

-

¥(2)av(e) = INPa@E)7u@) = IN*E (6.35)
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valid for the plane wave solution
¥(z) = Nu(p)e~P% . (6.36)
The constant N is determined by the normalization condition

E E
= 3 2 1) = 2= B3p = 2_-
1 —/d z p(Z,t) = |N| /d z=|N| (6.37)

using unit volume ([ d3z = 1). Thus

2 M
|N|* = 5 (6.38)
and -
W(@)ave) = £ =7 . (6.39)
[Note: This is also suggested by the relation
[H,i)‘— ez] = ieVp — ied x B
- 6.40)
C(m. .= .. 04 (
_-ze(E+axB) if E-—O
since p
EO =i[H,0] ] (6.41)
For a free particle, using the Heisenberg representation, we have
de=ind=a (6.42
™~ U T 42)
and d
30 = ilH,8) = i(-2map + 2i5 x p) . (6.43)
= i(—2aH + 2p)
We see that '
a(t) =pH™ ' + (a(0) — pH™1) e~ %8 | (6.44)
[Check:
da@ _ -1 . —2iHt
- = (@(0) —pH™') x (-2iH)e
=-2i(a(t)-pH ") H (6.45)

=1i(-2aH + 2p) ]
and thereby

#(t) =2(0) + PH *t + 32- (@0) —pHY) HY (¥ 1) . (6.46)
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